Ship Collision Analysis


Book Description

Accident records show that sooner or later hindrances near a waterway will be hit by ships, be it navigation marks, bridge structures, reefs or shallows. With this background modelling and analysis of ship collisions to bridge structures have an increasing importance as the basis for rational decision making in connection with planning, design and construction of bridges over navigable waters. The International Symposium on Ship Collision Analysis focuses on advances in accident analysis, collision prevention and protective measures. The publication Ship Collision Analysis, Proceedings of the 1998 International Symposium, presents the papers of international experts in ship collision analysis and structural design. The contributions give the state of the art and point to future development trends with in the focus areas.




Probability and Mechanics of Ship Collision and Grounding


Book Description

Probability and Mechanics of Ship Collision and Grounding provides simplified analytical procedures for ship collision and grounding assessments, including probabilistic methods, an estimation of the energy released during collisions, and a prediction of the extent of damage on involved structures. An additional chapter is dedicated to current finite element analysis techniques that are used for estimating structural damage during ship collisions. The book encapsulates reliable and fast analysis methods for collision and grounding assessment, presenting tactics that have been extensively validated with experimental and numerical results. In addition, all described analysis methods include realistic calculation examples to provide confidence in their use. - Provides mathematical expressions for the determination of probability of ship grounding events, ship to ship collisions and ship collisions against fixed and floating offshore installations, i.e., offshore wind parks and bridges over navigational channels - Provides analytical solutions to calculate the energy released for crushing in ship collision scenarios and loading on ship bottoms in grounding events - Reviews damage theorems and materials modellings and presents simplified analytical methods to determine the structural damage of ship and offshore structures in ship collisions and grounding - Provides calculation examples for each analysis method




Ship Collision Analysis


Book Description

Accident records show that sooner or later hindrances near a waterway will be hit by ships, be it navigation marks, bridge structures, reefs or shallows. With this background modelling and analysis of ship collisions to bridge structures have an increasing importance as the basis for rational decision making in connection with planning, design and construction of bridges over navigable waters. The International Symposium on Ship Collision Analysis focuses on advances in accident analysis, collision prevention and protective measures. The publication Ship Collision Analysis, Proceedings of the 1998 International Symposium, presents the papers of international experts in ship collision analysis and structural design. The contributions give the state of the art and point to future development trends with in the focus areas.




Developments in the Analysis and Design of Marine Structures


Book Description

Developments in the Analysis and Design of Marine Structures is a collection of papers presented at MARSTRUCT 2021, the 8th International Conference on Marine Structures (by remote transmission, 7-9 June 2021, organised by the Department of Marine Technology of the Norwegian University of Science and Technology, Trondheim, Norway), and is essential reading for academics, engineers and professionals involved in the design of marine and offshore structures. The MARSTRUCT Conference series deals with Ship and Offshore Structures, addressing topics in the fields of: - Methods and Tools for Loads and Load Effects; - Methods and Tools for Strength Assessment; - Experimental Analysis of Structures; - Materials and Fabrication of Structures; - Methods and Tools for Structural Design and Optimisation; and - Structural Reliability, Safety and Environmental Protection. The MARSTRUCT conferences series of started in Glasgow, UK in 2007, the second event of the series took place in Lisbon, Portugal in March 2009, the third in Hamburg, Germany in March 2011, the fourth in Espoo, Finland in March 2013, the fifth in Southampton, UK in March 2015, the sixth in Lisbon, Portugal in May 2017, and the seventh in Drubovnik, Croatia in May 2019. The ‘Proceedings in Marine Technology and Ocean Engineering’ series is dedicated to the publication of proceedings of peer-reviewed international conferences dealing with various aspects of ‘Marine Technology and Ocean Engineering’. The Series includes the proceedings of the following conferences: the International Maritime Association of the Mediterranean (IMAM) conferences, the Marine Structures (MARSTRUCT) conferences, the Renewable Energies Offshore (RENEW) conferences and the Maritime Technology (MARTECH) conferences. The ‘Marine Technology and Ocean Engineering’ series is also open to new conferences that cover topics on the sustainable exploration and exploitation of marine resources in various fields, such as maritime transport and ports, usage of the ocean including coastal areas, nautical activities, the exploration and exploitation of mineral resources, the protection of the marine environment and its resources, and risk analysis, safety and reliability. The aim of the series is to stimulate advanced education and training through the wide dissemination of the results of scientific research.




Risk-Based Ship Design


Book Description

Risk-based ship design is a new scientific and engineering field of growing interest to researchers, engineers and professionals from various disciplines related to ship design, construction, operation and regulation. The main motivation to use risk-based approaches is twofold: implement a novel ship design which is considered safe but - for some formal, regulatory reason - cannot be approved today and/or rationally optimize an existing design with respect to safety, without compromising on efficiency and performance. It is a clear direction that all future technological and regulatory (International Maritime Organisation) developments regarding ship design and operation will go through risk-based procedures, which are known and well established in other industries (e.g. nuclear, aviation). The present book derives from the knowledge gained in the course of the project SAFEDOR (Design, Operation and Regulation for Safety), an Integrated Project under the 6th framework programme of the European Commission (IP 516278). The book aims to provide an understanding of the fundamentals and details of the integration of risk-based approaches into the ship design process. The book facilitates the transfer of knowledge from recent research work to the wider maritime community and advances scientific approaches dealing with risk-based design and ship safety.










Artificial Intelligence Techniques for Advanced Computing Applications


Book Description

This book features a collection of high-quality research papers presented at the International Conference on Advanced Computing Technology (ICACT 2020), held at the SRM Institute of Science and Technology, Chennai, India, on 23–24 January 2020. It covers the areas of computational intelligence, artificial intelligence, machine learning, deep learning, big data, and applications of artificial intelligence in networking, IoT and bioinformatics




Vehicle Crash Mechanics


Book Description

Governed by strict regulations and the intricate balance of complex interactions among variables, the application of mechanics to vehicle crashworthiness is not a simple task. It demands a solid understanding of the fundamentals, careful analysis, and practical knowledge of the tools and techniques of that analysis. Vehicle Crash Mechanics s




A Human Error Approach to Aviation Accident Analysis


Book Description

Human error is implicated in nearly all aviation accidents, yet most investigation and prevention programs are not designed around any theoretical framework of human error. Appropriate for all levels of expertise, the book provides the knowledge and tools required to conduct a human error analysis of accidents, regardless of operational setting (i.e. military, commercial, or general aviation). The book contains a complete description of the Human Factors Analysis and Classification System (HFACS), which incorporates James Reason's model of latent and active failures as a foundation. Widely disseminated among military and civilian organizations, HFACS encompasses all aspects of human error, including the conditions of operators and elements of supervisory and organizational failure. It attracts a very broad readership. Specifically, the book serves as the main textbook for a course in aviation accident investigation taught by one of the authors at the University of Illinois. This book will also be used in courses designed for military safety officers and flight surgeons in the U.S. Navy, Army and the Canadian Defense Force, who currently utilize the HFACS system during aviation accident investigations. Additionally, the book has been incorporated into the popular workshop on accident analysis and prevention provided by the authors at several professional conferences world-wide. The book is also targeted for students attending Embry-Riddle Aeronautical University which has satellite campuses throughout the world and offers a course in human factors accident investigation for many of its majors. In addition, the book will be incorporated into courses offered by Transportation Safety International and the Southern California Safety Institute. Finally, this book serves as an excellent reference guide for many safety professionals and investigators already in the field.