Signal Treatment and Signal Analysis in NMR


Book Description

Signal analysis and signal treatment are integral parts of all types of Nuclear Magnetic Resonance. In the last ten years, much has been achieved in the development of dimensional spectra. At the same time new NMR techniques such as NMR Imaging and multidimensional spectroscopy have appeared, requiring entirely new methods of signal analysis. Up until now, most NMR texts and reference books limited their presentation of signal processing to a short introduction to the principles of the Fourier Transform, signal convolution, apodisation and noise reduction. To understand the mathematics of the newer signal processing techniques, it was necessary to go back to the primary references in NMR, chemometrics and mathematics journals. The objective of this book is to fill this void by presenting, in a single volume, both the theory and applications of most of these new techniques to Time-Domain, Frequency-Domain and Space-Domain NMR signals. Details are provided on many of the algorithms used and a companion CD-ROM is also included which contains some of the computer programs, either as source code or in executable form. Although it is aimed primarily at NMR users in the medical, industrial and academic fields, it should also interest chemometricians and programmers working with other techniques.




Signal Processing for Magnetic Resonance Imaging and Spectroscopy


Book Description

This reference/text contains the latest signal processing techniques in magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) for more efficient clinical diagnoses-providing ready-to-use algorithms for image segmentation and analysis, reconstruction and visualization, and removal of distortions and artifacts for increased detec




Multidimensional NMR Methods for the Solution State


Book Description

The content of this volume has been added to eMagRes (formerly Encyclopedia of Magnetic Resonance) - the ultimate online resource for NMR and MRI. The literature of multidimensional NMR began with the publication of three papers in 1975, then nine in 1976 and fifteen in 1977, and now contains many tens of thousands of papers. Any attempt to survey the field must therefore necessarily be very selective, not to say partial. In assembling this handbook, the Editors have sought to provide both the new researcher and the established scientist with a solid foundation for the understanding of multidimensional NMR, a representative if inevitably limited survey of its applications, an authoritative account of classic techniques such as COSY, NOESY and TOSCY, and an account of the latest progress in the development of multidimensional techniques. This handbook is structured in four parts. The first opens with an historical introduction to, and a brief account of, the practicalities and applications of multidimensional NMR methods, followed by a definitive survey of their conceptual basis and a series of articles setting out the generic principles of methods for acquiring and processing multidimensional NMR data. In the second part, the main families of multidimensional techniques, arranged in approximate order of increasing complexity, are described in detail, from simple J-resolved spectroscopy through to the powerful heteronuclear 3D and 4D methods that now dominate the study of structural biology in solution. The third part offers and illustrative selection from the very wide range of applications of multidimensional NMR methods, including some of the most recent developments in protein NMR. Finally, the fourth part introduces the idea of multidimensional spectra containing non-frequency dimensions, in which properties such as diffusion and relaxation are correlated. About EMR Handbooks / eMagRes Handbooks The Encyclopedia of Magnetic Resonance (up to 2012) and eMagRes (from 2013 onward) publish a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of EMR Handbooks / eMagRes Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of articles from eMagRes. In consultation with the eMagRes Editorial Board, the EMR Handbooks / eMagRes Handbooks are coherently planned in advance by specially-selected Editors, and new articles are written (together with updates of some already existing articles) to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry. Have the content of this Handbook and the complete content of eMagRes at your fingertips! Visit: www.wileyonlinelibrary.com/ref/eMagRes View other eMagRes publications here




NMR Data Processing


Book Description

NMR DATA PROCESSING Jeffrey C. Hoch and Alan S. Stern Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful nondestructive technique for exploring the structure of matter. In recent years, NMR instrumentation has become increasingly sophisticated, and the software used to acquire and process NMR data continues to expand in scope and complexity. This software has always been difficult to understand, and, until now, it seemed likely to remain that way. NMR Data Processing examines and explains the techniques used to process, present, and analyze NMR data. It provides a complete account of the fundamentals of spectrum analysis and establishes a framework for applying those fundamentals to real NMR data. It also details, in clear and concise language, the basic principles underlying the complex software needed to analyze the data. Two chapters are devoted to the fundamentals and applications of discrete Fourier transform (DFT) in NMR, which was crucial to the development of modern NMR spectroscopy. A large part of the book focuses on increasingly important non-DFT methods, which obtain higher sensitivity and resolution. Other topics covered include: * Data formats * Processing for multidimensional experiments * Parametric modeling of NMR signals * Standard techniques-apodization, zero-filling, the Hilbert transform * Artifacts-aliasing, leakage, solvent signals * Advanced processing techniques-LP, MaxEnt, Bayesian analysis Jeffrey C. Hoch and Alan S. Stern conclude their in-depth look at this rapidly growing field by exploring methods for analyzing processed data, including visualization, quantification, and error analysis. Readers are provided with a solid foundation for developing new methods of their own. NMR Data Processing is an important tool for students learning basic principles for the first time, technicians troubleshooting data processing problems, and professional researchers developing new techniques. It will help all NMR users acquire a true grasp of the methods behind the process, avoid the pitfalls of misapplication and misinterpretation, and exploit the full power of NMR software.




Novel Sampling Approaches in Higher Dimensional NMR


Book Description

Concepts in Projection-Reconstruction, by Ray Freeman and Ēriks Kupče.- Automated Projection Spectroscopy and Its Applications, by Sebastian Hiller and Gerhard Wider.- Data Sampling in Multidimensional NMR: Fundamentals and Strategies, by Mark W. Maciejewski, Mehdi Mobli, Adam D. Schuyler, Alan S. Stern and Jeffrey C. Hoch.- Generalized Fourier Transform for Non-Uniform Sampled Data, by Krzysztof Kazimierczuk, Maria Misiak, Jan Stanek, Anna Zawadzka-Kazimierczuk and Wiktor Koźmiński.- Applications of Non-Uniform Sampling and Processing, by Sven G. Hyberts, Haribabu Arthanari and Gerhard Wagner




Development of New Signal Processing and Mixture Separation Techniques for Nuclear Magnetic Resonance Spectroscopy Applications


Book Description

Although originally designed to treat neither spectroscopic nor multidimensional data, FDM was adapted to process NMR spectra of both large and small molecules in liquids in 1D, 2D, 3D, and 4D spectra, with the multidimensional cases requiring important modifications. FDM outperforms the discrete Fourier Transform (DFT) whenever sensitivity is good, the spectrum is sufficiently sparse, the spectral peaks are sharp and Lorentzian, and the extent of the measured time-domain data is short, so that the FT spectrum exhibits line shapes that are distorted only by the time-frequency uncertainty principle. A further study of FDM to perturbations under non-ideal conditions lead to further improvements and finally a multi-dimensional, phase-sensitive, hybrid FDM (HFDM) algorithm that is introduced for the first time. HFDM can enhance the resolution of peaks distorted by time-frequency uncertainty, while still producing a spectrum in which all the original imperfections are present, such that a true noise floor prevents inadvertent contouring of features that look like resonances but that would in fact be buried in noise in any decent spectral estimate. This opens the door to the application of HFDM on NMR data sets with more reliability. Mixture separation is another important area of NMR research and will be the focus of the third chapter. Separating a mixture of signals into its source components is an engaging but challenging problem relevant to research in a wide variety of fields from neurology and medical signal processing to speech recognition systems. The vast majority of NMR spectroscopic data is taken on isolated, purified compounds; yet mixtures are clearly important to tackle. The pharmaceutical industry is a key example of a field that would benefit tremendously from more robust NMR mixture separation techniques. Structural information about promising candidates from the drug design process must be extracted from samples that also contain the target molecule, side products, and impurities. NMR can identify individual samples with respect to their unique fingerprint spectra; however, it has been traditionally poor at handling mixtures. Diffusion ordered spectroscopy (DOSY) has been one of the few NMR techniques that can be used for mixture separation. It uses translational diffusion to effect a partial separation and can be quite powerful when the individual compounds have a distinguishable difference in their diffusion constants. However, the separation problem becomes more difficult when the component molecules have similar chemical functional group and overlap in their NMR spectra. Blind Source Separation (BSS) is a technique that can be used to extract an individual NMR subspectrum from spectra of a number of different mixtures; and--if the molecules do not interact strongly--these individual subspectra adhere closely to those of the corresponding pure compounds under the same conditions. Furthermore, the "mixture spectra" need not be different physical samples: any method that can modify the intensities of all the peaks from a given molecule, in concert, is applicable. Previously a mixture of two components was successfully separated. Recent efforts have uncovered a flaw in the original BSS algorithm that causes behaves erratically for samples with three or more components. This complication will be described in detail, and a newly developed approach-- dubbed "BISI" for Blind Iterative Source Identification--will be introduced that overcomes those previously unforeseen problems.




Fast NMR Data Acquisition


Book Description

Providing a definitive reference source on novel methods in NMR acquisition and processing, this book will highlight similarities and differences between emerging approaches and focus on identifying which methods are best suited for different applications. The highly qualified editors have conducted extensive research into the fundamentals of fast methods of data acquisition in NMR, including applications of non-Fourier methods of spectrum analysis. With contributions from additional distinguished experts in allied fields, clear explanations are provided on methods that speed up NMR experiments using different ways to manipulate the nuclei in the sample, modern methods for estimating the spectrum from the time domain response recorded during an NMR experiment, and finally how the data is sampled. Starting with a historical overview of Fourier Transformation and its role in modern NMR spectroscopy, this volume will clarify and demystify this important emerging field for spectroscopists and analytical chemists in industry and academia.




Computational Approaches for Assessing Spectral Quality in NMR Spectroscopy


Book Description

Nuclear magnetic resonance spectroscopy is a powerful biophysical technique for characterizing biological macromolecules including determination of three-dimensional structure, dynamics, and ligand interactions. The advent of multidimensional NMR spectroscopy facilitated a surge of structural and dynamical investigations of biological macromolecules by yielding unmatched gains in resolution. Indeed, the biological applications of NMR depend on acquiring the best possible spectra with desirable features such as high signal-to-noise ratio and high resolution. Because such spectra must be obtainable in reasonable time frames, practical limitations, in particular prohibitive multidimensional experiment times, have restricted implementation of NMR spectroscopy for certain biological problems. To address this problem, numerous data acquisition and signal processing strategies have been developed. To reduce the burden of experiment duration, nonuniform sampling can be used for collection of higher dimensionality experiments in shorter time frames and also permits acquisition of longer evolution times along indirect dimensions to achieve higher resolution spectra. However, data acquired according to nonuniform sampling strategies is not amenable to conventional data processing techniques, namely the Fourier Transform and therefore non-Fourier methods are increasingly relied upon due to their ability to handle such data. The relative prowess of these novel techniques and data processing algorithms have yet to be compared in a systematic fashion. Part of the difficulty is that non-Fourier methods present unique challenges due to their nonlinearity, which can produce nonrandom noise and render conventional metrics for spectral quality such as signal-to-noise ratio unreliable. The in situ receiver operating characteristic analysis (IROC) is a workflow for making comparisons between NMR data acquisition strategies and processing algorithms that circumvents the traditional difficulties of spectral comparison. IROC analysis is based on the Receiver Operating Characteristic curve and utilizes synthetic signals added to empirical data and yields several robust quantitative metrics for spectral quality. In this work, the theoretical development, underlying algorithm, and practical potential of IROC analysis are first presented to show its ability to make quantitative comparisons of spectral quality in situations were other metrics fail. The IROC method is subsequently applied to experimental data to quantify the sensitivity and resolution that can be achieved through various nonuniform sampling schemes that each have different properties.




Multidimensional Solid-State NMR and Polymers


Book Description

NMR spectroscopy is the most valuable and versatile analytical tool in chemistry. While excellent monographs exist on high-resolution NMR in liquids and solids, this is the first book to address multidimensional solid-state NMR. Multidimensional techniques enable researchers to obtain detailed information about the structure, dynamics, orientation, and phase separation of solids, which provides the basis of a better understanding of materials properties on the molecular level.Dramatic progress-much of it pioneered by the authors-has been achieved in this area, especially in synthetic polymers. Solid-state NMR now favorably competes with well-established techniques, such as light, x-ray, or neutron scattering, electron microscopy, and dielectric and mechanical relaxation.The application of multidimensional solid-state NMR inevitably involves use of concepts from different fields of science. This book also provides the first comprehensive treatment of both the new experimental techniques and the theoretical concepts needed in more complex data analysis. The text addresses spectroscopists and polymer scientists by treating the subject on different levels; descriptive, technical, and mathematical approaches are used when appropriate. It presents an overview of new developments with numerous experimental examples and illustrations, which will appeal to readers interested in both the information content as well as the potential of solid-state NMR. The book also contains many previously unpublished details that will be appreciated by those who want to perform the experiments. The techniques described are applicable not only to the study of synthetic polymers but to numerous problems in solid-state physics, chemistry, materials science, and biophysics. Presents original theories and new perspectives on scattering techniques Provides a systematic treatment of the whole subject Gives readers access to previously unpublished material Includes extensive illustrations