Signal Reconstruction Algorithms for Time-Interleaved ADCs


Book Description

An analog-to-digital converter (ADC) is a key component in many electronic systems. It is used to convert analog signals to the equivalent digital form. The conversion involves sampling which is the process of converting a continuous-time signal to a sequence of discrete-time samples, and quantization in which each sampled value is represented using a finite number of bits. The sampling rate and the effective resolution (number of bits) are two key ADC performance metrics. Today, ADCs form a major bottleneck in many applications like communication systems since it is difficult to simultaneously achieve high sampling rate and high resolution. Among the various ADC architectures, the time-interleaved analog-to-digital converter (TI-ADC) has emerged as a popular choice for achieving very high sampling rates and resolutions. At the principle level, by interleaving the outputs of M identical channel ADCs, a TI-ADC could achieve the same resolution as that of a channel ADC but with M times higher bandwidth. However, in practice, mismatches between the channel ADCs result in a nonuniformly sampled signal at the output of a TI-ADC which reduces the achievable resolution. Often, in TIADC implementations, digital reconstructors are used to recover the uniform-grid samples from the nonuniformly sampled signal at the output of the TI-ADC. Since such reconstructors operate at the TI-ADC output rate, reducing the number of computations required per corrected output sample helps to reduce the power consumed by the TI-ADC. Also, as the mismatch parameters change occasionally, the reconstructor should support online reconfiguration with minimal or no redesign. Further, it is advantageous to have reconstruction schemes that require fewer coefficient updates during reconfiguration. In this thesis, we focus on reducing the design and implementation complexities of nonrecursive finite-length impulse response (FIR) reconstructors. We propose efficient reconstruction schemes for three classes of nonuniformly sampled signals that can occur at the output of TI-ADCs. Firstly, we consider a class of nonuniformly sampled signals that occur as a result of static timing mismatch errors or due to channel mismatches in TI-ADCs. For this type of nonuniformly sampled signals, we propose three reconstructors which utilize a two-rate approach to derive the corresponding single-rate structure. The two-rate based reconstructors move part of the complexity to a symmetric filter and also simplifies the reconstruction problem. The complexity reduction stems from the fact that half of the impulse response coefficients of the symmetric filter are equal to zero and that, compared to the original reconstruction problem, the simplified problem requires only a simpler reconstructor. Next, we consider the class of nonuniformly sampled signals that occur when a TI-ADC is used for sub-Nyquist cyclic nonuniform sampling (CNUS) of sparse multi-band signals. Sub-Nyquist sampling utilizes the sparsities in the analog signal to sample the signal at a lower rate. However, the reduced sampling rate comes at the cost of additional digital signal processing that is needed to reconstruct the uniform-grid sequence from the sub-Nyquist sampled sequence obtained via CNUS. The existing reconstruction scheme is computationally intensive and time consuming and offsets the gains obtained from the reduced sampling rate. Also, in applications where the band locations of the sparse multi-band signal can change from time to time, the reconstructor should support online reconfigurability. Here, we propose a reconstruction scheme that reduces the computational complexity of the reconstructor and at the same time, simplifies the online reconfigurability of the reconstructor. Finally, we consider a class of nonuniformly sampled signals which occur at the output of TI-ADCs that use some of the input sampling instants for sampling a known calibration signal. The samples corresponding to the calibration signal are used for estimating the channel mismatch parameters. In such TI-ADCs, nonuniform sampling is due to the mismatches between the channel ADCs and due to the missing input samples corresponding to the sampling instants reserved for the calibration signal. We propose three reconstruction schemes for such nonuniformly sampled signals and show using design examples that, compared to a previous solution, the proposed schemes require substantially lower computational complexity.




Control, Mechatronics and Automation Technology


Book Description

This proceedings volume contains selected papers presented at the 2014 International Conference on Control, Mechatronics and Automation Technology (ICCMAT 2014), held July 24-25, 2014 in Beijing, China. The objective of ICCMAT 2014 is to provide a platform for researchers, engineers, academicians as well as industrial professionals from all over th




Cognitive Radio


Book Description

One of the most critical resources required for wireless communication is the radio spectrum. Traditionally, the administration of the spectrum rights tends to grant exclusive rights to some services in the major geographic regions. On the other hand, several studies have shown that the spectrum is actually underutilized and that new devices should use the underutilized spectrum in an opportunistic manner. Cognitive radio is a way to do that. The cognitive radio needs to collect cognition about the radio environment to operate efficiently. Such a radio needs to understand if the spectrum it intends to use is free or utilized by some primary user. By primary user we mean the licensed user of the band, and correspondingly the cognitive radios are often termed as secondary users. The goal of this book is to collect recent research about cognitive radio and provide an up-to-date review of the challenging topic.




Signal Processing Aspects of Cell-Free Massive MIMO


Book Description

The fifth generation of mobile communication systems (5G) promises unprecedented levels of connectivity and quality of service (QoS) to satisfy the incessant growth in the number of mobile smart devices and the huge increase in data demand. One of the primary ways 5G network technology will be accomplished is through network densification, namely increasing the number of antennas per site and deploying smaller and smaller cells. Massive MIMO, where MIMO stands for multiple-input multiple-output, is widely expected to be a key enabler of 5G. This technology leverages an aggressive spatial multiplexing, from using a large number of transmitting/receiving antennas, to multiply the capacity of a wireless channel. A massive MIMO base station (BS) is equipped with a large number of antennas, much larger than the number of active users. The users are coherently served by all the antennas, in the same time-frequency resources but separated in the spatial domain by receiving very directive signals. By supporting such a highly spatially-focused transmission (precoding), massive MIMO provides higher spectral and energy efficiency, and reduces the inter-cell interference compared to existing mobile systems. The inter-cell interference is however becoming the major bottleneck as we densify the networks. It cannot be removed as long as we rely on a network-centric implementation, since the inter-cell interference concept is inherent to the cellular paradigm. Cell-free massive MIMO refers to a massive MIMO system where the BS antennas, herein referred to as access points (APs), are geographically spread out. The APs are connected, through a fronthaul network, to a central processing unit (CPU) which is responsible for coordinating the coherent joint transmission. Such a distributed architecture provides additional macro-diversity, and the co-processing at multiple APs entirely suppresses the inter-cell interference. Each user is surrounded by serving APs and experiences no cell boundaries. This user-centric approach, combined with the system scalability that characterizes the massive MIMO design, constitutes a paradigm shift compared to the conventional centralized and distributed wireless communication systems. On the other hand, such a distributed system requires higher capacity of back/front-haul connections, and the signal co-processing increases the signaling overhead. In this thesis, we focus on some signal processing aspects of cell-free massive MIMO. More specifically, we firstly investigate if the downlink channel estimation, via downlink pilots, brings gains to cell-free massive MIMO or the statistical channel state information (CSI) knowledge at the users is enough to reliably perform data decoding, as in conventional co-located massive MIMO. Allocating downlink pilots is costly resource-wise, thus we also propose resource saving-oriented strategies for downlink pilot assignment. Secondly, we study further fully distributed and scalable precoding schemes in order to outperform cell-free massive MIMO in its canonical form, which consists in single-antenna APs implementing conjugate beamforming (also known as maximum ratio transmission).




Cell-Free Massive MIMO


Book Description

The fifth generation of mobile communication systems (5G) is nowadays a reality. 5G networks are been deployed all over the world, and the first 5G-capable devices (e.g., smartphones, tablets, wearable, etc.) are already commercially available. 5G systems provide unprecedented levels of connectivity and quality of service (QoS) to cope with the incessant growth in the number of connected devices and the huge increase in data-rate demand. Massive MIMO (multiple-input multiple-output) technology plays a key role in 5G systems. The underlying principle of this technology is the use of a large number of co-located antennas at the base station, which coherently transmit/receive signals to/from multiple users. This signal co-processing at multiple antennas leads to manifold benefits: array gain, spatial diversity and spatial user multiplexing. These elements enable to meet the QoS requirements established for the 5G systems. The major bottleneck of massive MIMO systems as well as of any cellular network is the inter-cell interference, which affects significantly the cell-edge users, whose performance is already degraded by the path attenuation. To overcome these limitations and provide uniformly excellent service to all the users we need a more radical approach: we need to challenge the cellular paradigm. In this regard, cell-free massive MIMO constitutes the paradigm shift. In the cell-free paradigm, it is not the base station surrounded by the users, but rather it is each user being surrounded by smaller, simpler, serving base stations referred to as access points (APs). In such a system, each user experiences being in the cell-center, and it does not experience any cell boundaries. Hence, the terminology cell-free. As a result, users are not affected by inter-cell interference, and the path attenuation is significantly reduced due to the presence of many APs in their proximity. This leads to impressive performance. Although appealing from the performance viewpoint, the designing and implementation of such a distributed massive MIMO system is a challenging task, and it is the object of this thesis. More specifically, in this thesis we study: Paper A) The large potential of this promising technology in realistic indoor/outdoor scenarios while also addressing practical deployment issues, such as clock synchronization among APs, and cost-efficient implementations. We provide an extensive description of a cell-free massive MIMO system, emphasizing strengths and weaknesses, and pointing out differences and similarities with existing distributed multiple antenna systems, such as Coordinated MultiPoint (CoMP). Paper B) How to preserve the scalability of the system, by proposing a solution related to data processing, network topology and power control. We consider a realistic scenario where multiple central processing units serve disjoint subsets of APs, and compare the spectral efficiency provided by the proposed scalable framework with the canonical cell-free massive MIMO and CoMP. Paper C) How to improve the spectral efficiency (SE) in the downlink (DL), by devising two distributed precoding schemes, referred to as local partial zero-forcing (ZF) and local protective partial ZF, that provide an adaptable trade-off between interference cancelation and boosting of the desired signal, with no additional front-haul overhead, and that are implementable by APs with very few antennas. We derive closed-form expressions for the achievable SE under the assumption of independent Rayleigh fading channel, channel estimation error and pilot contamination. These closed-form expressions are then used to devise optimal max-min fairness power control. Paper D) How to further improve the SE by letting the user estimate the DL channel from DL pilots, instead of relying solely on the knowledge of the channel statistics. We derive an approximate closed-form expression of the DL SE for conjugate beamforming (CB), and assuming independent Rayleigh fading. This expression accounts for beamformed DL pilots, estimation errors and pilot contamination at both the AP and the user side. We devise a sequential convex approximation algorithm to globally solve the max-min fairness power control optimization problem, and a greedy algorithm for uplink (UL) and DL pilot assignment. The latter consists in jointly selecting the UL and DL pilot pair, for each user, that maximizes the smallest SE in the network. Paper E) A precoding scheme that is more suitable when only the channel statistics are available at the users, referred to as enhanced normalized CB. It consists in normalizing the precoding vector by its squared norm in order to reduce the fluctuations of the effective channel seen at the user, and thereby to boost the channel hardening. The performance achieved by this scheme is compared with the CB scheme with DL training (described in Paper D). Paper F) A maximum-likelihood-based method to estimate the channel statistics in the UL, along with an accompanying pilot transmission scheme, that is particularly useful in line-of-sight operation and in scenarios with resource constraints. Pilots are structurally phase-rotated over different coherence blocks to create an effective statistical distribution of the received pilot signal that can be efficiently exploited by the AP when performing the proposed estimation method. The overall conclusion is that cell-free massive MIMO is not a utopia, and a practical, distributed, scalable, high-performance system can be implemented. Today it represents a hot research topic, but tomorrow it might represent a key enabler for beyond-5G technology, as massive MIMO has been for 5G. La quinta generazione dei sistemi radiomobili cellulari (5G) è oggi una realtà. Le reti 5G si stanno diffondendo in tutto il mondo e i dispositivi 5G (ad esempio smartphones, tablets, indossabili, ecc.) sono già disponibili sul mercato. I sistemi 5G garantiscono livelli di connettività e di qualità di servizio senza precedenti, per fronteggiare l’incessante crescita del numero di dispositivi connessi alla rete e della domanda di dati ad alta velocità. La tecnologia Massive MIMO (multiple-input multiple-output) riveste un ruolo fondamentale nei sistemi 5G. Il principio alla base di questa tecnologia è l’impiego di un elevato numero di antenne collocate nella base station (stazione radio base) le quali trasmettono/ricevono segnali, in maniere coerente, a/da più terminali utente. Questo co-processamento del segnale da parte di più antenne apporta molteplici benefici: guadagno di array, diversità spaziale e multiplazione degli utenti nel dominio spaziale. Questi elementi consentono di raggiungere i requisiti di servizio stabiliti per i sistemi 5G. Tuttavia, il limite principale dei sistemi massive MIMO, così come di ogni rete cellulare, è rappresentato dalla interferenza inter-cella (ovvero l’interferenza tra aree di copertura gestite da diverse base stations), la quale riduce in modo significativo le performance degli utenti a bordo cella, già degradate dalle attenuazioni del segnale dovute alla considerevole distanza dalla base station. Per superare queste limitazioni e fornire una qualità del servizio uniformemente eccellente a tutti gli utenti, è necessario un approccio più radicale e guardare oltre il classico paradigma cellulare che caratterizza le attuali architetture di rete. A tal proposito, cell-free massive MIMO (massive MIMO senza celle) costituisce un cambio di paradigma: ogni utente è circondato e servito contemporaneamente da numerose, semplici e di dimensioni ridotte base stations, denominate access points (punti di accesso alla rete). Gli access points cooperano per servire tutti gli utenti nella loro area di copertura congiunta, eliminando l’interferenza inter-cella e il concetto stesso di cella. Non risentendo più dell’effetto “bordo-cella”, gli utenti possono usufruire di qualità di servizio e velocità dati eccellenti. Sebbene attraente dal punto di vista delle performance, l’implementazione di un tale sistema distribuito è una operazione impegnativa ed è oggetto di questa tesi. Piu specificatamente, questa tesi di dottorato tratta: Articolo A) L’enorme potenziale di questa promettente tecnologia in scenari realistici sia indoor che outdoor, proponendo anche delle soluzioni di implementazione flessibili ed a basso costo. Articolo B) Come preservare la scalabilità del sistema, proponendo soluzioni distribuite riguardanti il processamento e la condivisione dei dati, l’architettura di rete e l’allocazione di potenza, ovvero come ottimizzare i livelli di potenza trasmessa dagli access points per ridurre l’interferenza tra utenti e migliorare le performance. Articolo C) Come migliorare l’efficienza spettrale in downlink (da access point verso utente) proponendo due schemi di pre-codifica dei dati di trasmissione, denominati local partial zero-forcing (ZF) e local protective partial ZF, che forniscono un perfetto compromesso tra cancellazione dell’interferenza tra utenti ed amplificazione del segnale desiderato. Articolo D) Come migliorare l’efficienza spettrale in downlink permettendo al terminale utente di stimare le informazioni sulle condizioni istantanee del canale da sequenze pilota, piuttosto che basarsi su informazioni statistiche ed a lungo termine, come convenzionalmente previsto. Articolo E) In alternativa alla soluzione precedente, uno schema di pre-codifica che è più adatto al caso in cui gli utenti hanno a disposizione esclusivamente informazioni statistiche sul canale per poter effettuare la decodifica dei dati. Articolo F) Un metodo per permettere agli access points di stimare, in maniera rapida, le condizioni di canale su base statistica, favorito da uno schema di trasmissione delle sequenze pilota basato su rotazione di fase. Realizzare un sistema cell-free massive MIMO pratico, distribuito, scalabile e performante non è una utopia. Oggi questo concept rappresenta un argomento di ricerca interessante, attraente e stimolante ma in futuro potrebbe costituire un fattore chiave per le tecnologie post-5G, proprio come massive MIMO lo è stato per il 5G. Den femte generationens mobilkommunikationssystem (5G) är numera en verklighet. 5G-nätverk är utplacerade på ett flertal platser världen över och de första 5G-kapabla terminalerna (såsom smarta telefoner, surfplattor, kroppsburna apparater, etc.) är redan kommersiellt tillgängliga. 5G-systemen kan tillhandahålla tidigare oöverträffade nivåer av uppkoppling och servicekvalitet och är designade för en fortsatt oavbruten tillväxt i antalet uppkopplade apparater och ökande datataktskrav. Massiv MIMO-teknologi (eng: multiple-input multiple-output) spelar en nyckelroll i dagens 5G-system. Principen bakom denna teknik är användningen av ett stort antal samlokaliserade antenner vid basstationen, där alla antennerna sänder och tar emot signaler faskoherent till och från flera användare. Gemensam signalbehandling av många antennsignaler ger ett flertal fördelar, såsom hög riktverkan via lobformning, vilket leder till högre datatakter samt möjliggör att flera användare utnyttjar samma radioresurser via rumslig användarmultiplexering. Eftersom en signal kan gå genom flera olika, möjligen oberoende kanaler, så utsätts den för flera olika förändringar samtidigt. Denna mångfald ökar kvaliteten på signalen vid mottagaren och förbättrar radiolänkens robusthet och tillförlitlighet. Detta gör det möjligt att uppfylla de höga kraven på servicekvalitet som fastställts för 5G-systemen. Den största begränsningen för massiva MIMO-system såväl som för alla cellulära mobilnätverk, är störningar från andra celler som påverkar användare på cellkanten väsentligt, vars prestanda redan begränsas av sträckdämpningen på radiokanalen. För att övervinna dessa begränsningar och för att kunna tillhandahålla samma utmärkta servicekvalitet till alla användare behöver vi ett mer radikalt angreppssätt: vi måste utmana cellparadigmet. I detta avseende utgör cellfri massiv-MIMO teknik ett paradigmskifte. I cellfri massive-MIMO är utgångspunkten inte att basstationen är omgiven av användare som den betjänar, utan snarare att varje användare omges av basstationer som de betjänas av. Dessa basstationer, ofta mindre och enklare, kallas accesspunkter (AP). I ett sådant system upplever varje användare att den befinner sig i centrum av systemet och ingen användare upplever några cellgränser. Därav terminologin cellfri. Som ett resultat av detta påverkas inte användarna av inter-cellstörningar och sträckdämpningen reduceras kraftigt på grund av närvaron av många accesspunkter i varje användares närhet. Detta leder till imponerande prestanda. Även om det är tilltalande ur ett prestandaperspektiv så är utformningen och implementeringen av ett sådant distribuerat massivt MIMO-system en utmanande uppgift, och det är syftet med denna avhandling att studera detta. Mer specifikt studerar vi i denna avhandling: A) den mycket stora potentialen med denna teknik i realistiska inomhus- såväl som utomhusscenarier, samt hur man hanterar praktiska implementeringsproblem, såsom klocksynkronisering bland accesspunkter och kostnadseffektiva implementeringar; B) hur man ska uppnå skalbarhet i systemet genom att föreslå lösningar relaterade till databehandling, nätverkstopologi och effektkontroll; C) hur man ökar datahastigheten i nedlänken med hjälp av två nyutvecklade distribuerade överföringsmetoder som tillhandahåller en avvägning mellan störningsundertryckning och förstärkning av önskade signaler, utan att öka mängden intern signalering till de distribuerade accesspunkterna, och som kan implementeras i accesspunkter med mycket få antenner; D) hur man kan förbättra prestandan ytterligare genom att låta användaren estimera nedlänkskanalen med hjälp av nedlänkspiloter, istället för att bara förlita sig på kunskap om kanalstatistik; E) en överföringsmetod för nedlänk som är mer lämpligt när endast kanalstatistiken är tillgänglig för användarna. Prestandan som uppnås genom detta schema jämförs med en utökad variant av den nedlänk-pilotbaserade metoden (beskrivet i föregående punkt); F) en metod för att uppskatta kanalstatistiken i upplänken, samt en åtföljande pilotsändningsmetod, som är särskilt användbart vid direktvägsutbredning (line-of-sight) och i scenarier med resursbegränsningar. Den övergripande slutsatsen är att cellfri massiv MIMO inte är en utopi, och att ett distribuerat, skalbart, samt högpresterande system kan implementeras praktiskt. Idag representerar detta ett hett forskningsämne, men snart kan det visa sig vara en viktig möjliggörare för teknik bortom dagens system, på samma sätt som centraliserad massiv MIMO har varit för de nya 5G-systemen.




Spatial Resource Allocation in Massive MIMO Communications


Book Description

Massive MIMO (multiple-input multiple-output) is considered as an heir of the multi-user MIMO technology and it has gained lots of attention from both academia and industry since the last decade. By equipping base stations (BSs) with hundreds of antennas in a compact array or a distributed manner, this new technology can provide very large multiplexing gains by serving many users on the same time-frequency resources and thereby bring significant improvements in spectral efficiency (SE) and energy efficiency (EE) over the current wireless networks. The transmit power, pilot training, and spatial transmission resources need to be allocated properly to the users to achieve the highest possible performance. This is called resource allocation and can be formulated as design utility optimization problems. If the resource allocation in Massive MIMO is optimized, the technology can handle the exponential growth in both wireless data traffic and number of wireless devices, which cannot be done by the current cellular network technology. In this thesis, we focus on the five different resource allocation aspects in Massive MIMO communications: The first part of the thesis studies if power control and advanced coordinated multipoint (CoMP) techniques are able to bring substantial gains to multi-cell Massive MIMO systems compared to the systems without using CoMP. More specifically, we consider a network topology with no cell boundary where the BSs can collaborate to serve the users in the considered coverage area. We focus on a downlink (DL) scenario in which each BS transmits different data signals to each user. This scenario does not require phase synchronization between BSs and therefore has the same backhaul requirements as conventional Massive MIMO systems, where each user is preassigned to only one BS. The scenario where all BSs are phase synchronized to send the same data is also included for comparison. We solve a total transmit power minimization problem in order to observe how much power Massive MIMO BSs consume to provide the requested quality of service (QoS) of each user. A max-min fairness optimization is also solved to provide every user with the same maximum QoS regardless of the propagation conditions. The second part of the thesis considers a joint pilot design and uplink (UL) power control problem in multi-cell Massive MIMO. The main motivation for this work is that the pilot assignment and pilot power allocation is momentous in Massive MIMO since the BSs are supposed to construct linear detection and precoding vectors from the channel estimates. Pilot contamination between pilot-sharing users leads to more interference during data transmission. The pilot design is more difficult if the pilot signals are reused frequently in space, as in Massive MIMO, which leads to greater pilot contamination effects. Related works have only studied either the pilot assignment or the pilot power control, but not the joint optimization. Furthermore, the pilot assignment is usually formulated as a combinatorial problem leading to prohibitive computational complexity. Therefore, in the second part of this thesis, a new pilot design is proposed to overcome such challenges by treating the pilot signals as continuous optimization variables. We use those pilot signals to solve different max-min fairness optimization problems with either ideal hardware or hardware impairments. The third part of this thesis studies a two-layer decoding method that mitigates inter-cell interference in multi-cell Massive MIMO systems. In layer one, each BS estimates the channels to intra-cell users and uses the estimates for local decoding within the cell. This is followed by a second decoding layer where the BSs cooperate to mitigate inter-cell interference. An UL achievable SE expression is computed for arbitrary two-layer decoding schemes, while a closed form expression is obtained for correlated Rayleigh fading channels, maximum-ratio combining (MRC), and largescale fading decoding (LSFD) in the second layer. We formulate a sum SE maximization problem with both the data power and LSFD vectors as optimization variables. Since the problem is non-convex, we develop an algorithm based on the weighted minimum mean square error (MMSE) approach to obtain a stationary point with low computational complexity. Motivated by recent successes of deep learning in predicting the solution to an optimization problem with low runtime, the fourth part of this thesis investigates the use of deep learning for power control optimization in Massive MIMO. We formulate the joint data and pilot power optimization for maximum sum SE in multi-cell Massive MIMO systems, which is a non-convex problem. We propose a new optimization algorithm, inspired by the weighted MMSE approach, to obtain a stationary point in polynomial time. We then use this algorithm together with deep learning to train a convolutional neural network to perform the joint data and pilot power control in sub-millisecond runtime. The solution is suitable for online optimization. Finally, the fifth part of this thesis considers a large-scale distributed antenna system that serves the users by coherent joint transmission called Cell-free Massive MIMO. For a given user set, only a subset of the access points (APs) is likely needed to satisfy the users' performance demands. To find a flexible and energy-efficient implementation, we minimize the total power consumption at the APs in the DL, considering both the hardware consumed and transmit powers, where APs can be turned off to reduce the former part. Even though this is a nonconvex optimization problem, a globally optimal solution is obtained by solving a mixed-integer second-order cone program (SOCP). We also propose low-complexity algorithms that exploit group-sparsity or received power strength in the problem formulation.




Exploring Alternative Massive MIMO Designs


Book Description

The development of information and communication technologies (ICT) provides the means for reaching global connectivity that can help humanity progress and prosper. This comes with high demands on data traffic and number of connected devices which are rapidly growing and need to be met by technological development. Massive MIMO, where MIMO stands for multiple-input multiple-output, is a fundamental component of the 5G wireless communication standard for its ability to provide high spectral and energy efficiency, SE and EE, respectively. The key feature of this technology is the use of a large number of antennas at the base stations (BSs) to spatially multiplex several user equipments (UEs). In the development of new technologies like Massive MIMO, many design alternatives need to be evaluated and compared in order to find the best operating point with a preferable tradeoff between low cost and complexity. In this thesis, two alternative designs for signal processing and hardware in Massive MIMO are studied and compared with the baseline operation in terms of SE, EE, and power consumption. The first design is called superimposed pilot (SP) transmission and is based on superimposing pilot and data symbols to eliminate the need to reserve dedicated time-frequency resources for pilots. This allows more data to be transmitted and supports longer pilot sequences that, in turn, reduce pilot contamination. The second design is mixed analog-to-digital converters (ADCs) and it aims at balancing the SE performance and the power consumption cost by allowing different ADC bit resolutions across the BS antennas. The results show that the Massive MIMO baseline, when properly optimized, is the preferred choice in standard deployments and propagation conditions. However, the SP alternative design can increase the SE compared to the baseline by using the Massive-MIMO iterative channel estimation and decoding (MICED) algorithm proposed in this dissertation. In particular, the SE gains are found in cases with high mobility, high carrier frequencies, or high number of spatially multiplexed UEs. For the mixed-ADCs alternative design, improvements in the SE and EE compared to the Massive MIMO baseline can be achieved in cases with distributed BS antennas where interference suppression techniques are used. El desarrollo en tecnologías de información y comunicación (en inglés, ICT) provee los medios para alcanzar la conectividad global que puede ayudar a la humanidad a progresar y prosperar. Esto implica que el avance tecnológico debe satisfacer la alta demanda de tráfico de data y número de equipos conectados que se encuentra en rápido crecimiento. La tecnología de múltiple-entrada múltiple-salida masiva, en inglés Massive MIMO, se considera una pieza fundamental de la quinta generación de comunicaciones inalámbricas (5G) debido a su capacidad de proveer una alta eficiencia espectral y energética (en inglés, SE y EE, respectivamente). Esta tecnología está caracterizada fundamentalmente por el uso de un alto número de antenas en la estación base (en inglés, BS) para multiplexar a varios usuarios en el espacio. En el desarrollo de nuevas tecnologías como Massive MIMO, muchas alternativas de diseño necesitan ser evaluadas y comparadas para encontrar el mejor punto de operación con un balance conveniente entre complejidad y bajo costo. En esta tesis, dos alternativas de diseño para el procesamiento de señales y el hardware de Massive MIMO son estudiadas y comparadas con la operación del diseño base en términos de eficiencia espectral, eficiencia energética y consumo de potencia. El primer diseño se denomina transmisión de pilotos superpuestos (en inglés, SP) y está basado en la superposición de señales piloto y de datos para eliminar la necesidad de asignar recursos dedicados a señales pilotos. Además, la transmisión de pilotos superpuestos permite reducir la interferencia que surge a raíz de reusar las señales pilotos en distintas celdas, este efecto se denomina contaminación de pilotos (en inglés pilot contamination). El segundo diseño se denomina conversores analógico-adigital (en inglés, ADC) mixtos (en inglés, mixed-ADCs) y se basa en permitir distintas resoluciones de bit en los conversores analógico-a-digital de las antenas en la estación base. Este diseño permite que la resolución de los conversores analógico-a-digital se adapte a las condiciones de propagación de las señales para balancear los beneficios en eficiencia espectral con el costo de potencia consumida. Los resultados muestran que el diseño base de Massive MIMO, cuando esta optimizado de manera apropiada, es la opción preferida en despliegues y condiciones de propagación estándares. Sin embargo, la transmisión de pilotos superpuestos puede incrementar la eficiencia espectral en comparación al diseño base cuando se combina con el método iterativo para la estimación de canal y decodificación en Massive MIMO propuesto en esta tesis (en inglés, MICED). En particular, las ganancias en eficiencia espectral son obtenidas en escenarios con alta movilidad de usuarios, alta frecuencia portadora, o alto número de usuarios multiplexados en el espacio. Con respecto al diseño alternativo de conversores analógico-a-digital mixtos, la eficiencia espectral y energética pueden ser incrementadas en comparación al diseño base cuando las antenas de la estación base están distribuidas en el espacio y técnicas para suprimir interferencia entre usuarios son usadas. Die Entwicklung der Informations- und Kommunikationstechnologien (ICT) bietet die Möglichkeit eine globale Konnektivität zu erreichen, die Fortschritt und Wohlstand fördern kann. Dies bedeutet zugleich, dass der steigende Datenverkehr und die wachsende Anzahl verbundener Geräte eines entsprechenden technologischen Fortschritts bedarf. Massive MIMO, wobei MIMO für multiple-input multiple-output steht, ist eine fundamentale Komponente des drahtlosen 5G Kommunikationsstandards, da sie eine hohe spektrale Effizienz (SE) und Energieeffizienz bietet (EE). Die Hauptkomponente dieser Technologie ist die Nutzung einer großen Anzahl an Antennen auf Seiten der Basisstationen (BSs) um mehrere Nutzer zu bedienen, die ihre Signale zur selben Zeit auf derselben Frequenz senden während sie in der räumlichen Domäne getrennt sind (spatial multiplexing). In der Entwicklung neuer Technologien wie Massive MIMO müssen viele Designalternativen evaluiert und verglichen werden um den optimalen Betriebspunkt im Sinne eines sinnvollen Gleichgewichts zwischen Kosteneffizienz und Komplexität zu finden. In dieser Doktorarbeit werden zwei alternative Designs für Signalverarbeitung und Hardware in Massive MIMO Systemen untersucht und in Bezug auf spektrale Effizienz, Energieeffizienz und Stromverbrauch mit dem Massive MIMO Basisdesign verglichen. Das erste Design heißt überlagerte Pilotton Übertragung (superimposed pilot, SP) und basiert auf der Überlagerung von Pilotton und Datensignal, damit nicht mehr die Notwendigkeit besteht bestimmte Ressourcen für Pilottöne zu reservieren. Dies ermöglicht die Übertragung größerer Datenmengen und reduziert die Interferenz, die aus der wiederholten Nutzung der Pilottöne in verschiedenen Zellen resultiert (pilot contamination). Das zweite Design nennt sich gemischte analog zu digital Konverter (mixed analog-to-digital converters, ADCs) und erlaubt es einen Kompromiss zwischen hoher spektraler Effizienz und niedrigem Stromverbrauch zu finden. Dies geschieht indem die Bit Auflösung an jeder BS Antenne an die Ausbreitungsbedingungen der Signale angepasst wird. Die Resultate zeigen, dass das Massive MIMO Basisdesign, wenn es richtig optimiert ist, bei Standardeinsätzen und unter normalen Ausbreitungsbedingungen, die bevorzugte Wahl ist. Das alternative SP Design kann jedoch die spektrale Effizienz im Vergleich zum Basisdesign durch die Nutzung des in dieser Dissertation vorgeschlagenen Massive MIMO iterativen Kanalschätzungs- und Dekodierungsalgorithmus (MICED) erhöhen. Die verbesserte spektrale Effizienz findet sich insbesondere in Fällen hoher Nutzermobilität, hoher Frequenzen oder hoher Anzahl an gleichzeitig bedienter Nutzer. Das gemischte analog zu digital Konverter Design ermöglicht in Fällen verteilter Basisstationen bei denen Interferenz unterdrückende Techniken genutzt werden eine verbesserte spektrale Effizienz und Energieeffizienz. Utvecklingen av informations- och kommunikationsteknik (IKT) gör det möjligt för människor från hela världen att kopplas samman och utbyta kunskaper. Ju mer vi vet och förstår om varandra, desto större är chansen att mänskligheten kan uppnå globala utvecklingsmål och välstånd. IKT-utvecklingen är associerad med höga krav på datatakter och antal uppkopplade enheter. Dessa krav ökar ständigt och måste mötas med teknologisk utveckling. Massiv MIMO, där MIMO står för multiple-input multiple-output, är flerantennteknik och en grundsten i nästa generations trådlösa kommunikationssystem. Huvudanledningen till detta är att tekniken kan förbättra spektraleffektiviteten (SE), vilket är ett mått på hur väl vi kan kommunicera data över begränsade radiofrekvensresurser. Tekniken förbättrar även energieffektiviteten (EE), vilket är ett mått på hur effektivt tekniken använder energi till att kommunicera data. Massiv MIMO bygger på användandet av ett stort antal av antenner på basstationerna för att kommunicera med ett flertal användare samtidigt och på samma frekvensresurser. Detta möjliggörs genom ”rumslig multiplexing” vilket betyder att signaler från användare på olika platser kan separeras på basstationen i den rumsliga domänen. Denna separering kräver att basstationen först mäter egenskaperna hos signaler som kommer från de olika användarnas positioner. När en ny teknik, såsom Massiv MIMO, utvecklas är det viktigt att olika alternativa designer utvärderas och jämförs för att identifiera den bästa varianten. Detta kan exempelvis vara den variant som uppnår en viss balans mellan hög kommunikationsprestanda och låg kostnad. I denna avhandling utvärderas två alternativa sätt att designa signalbehandlingen och hårdvaran i Massiv MIMO. Dessa jämförs med konventionell Massiv MIMO i termer av SE, EE och effektförbrukning. Den första alternativa designen kallas överlagrade piloter och bygger på att kända pilotsignaler och okända datasignaler skickas samtidigt från användarna, istället för efter varandra. Pilotsignalerna används för att mäta upp de trådlösa kanalerna som signalerna färdas över medan datasignalerna innehåller den information som ska kommuniceras. Genom att överlagra pilotsignalerna så behövs inga dedikerade radioresurser för piloter och därmed finns det mer resurser för datasändning. Dessutom minskar överlagrandet de störningar som kommer från andra användare som använder samma pilot, vilket kallas pilotkontaminering. Den andra alternativa designen kallas mixade analog-till-digital (AD) omvandlare. En AD-omvandlare är en krets som behövs på varje antenn för att omvandla analoga radiosignaler till digitala signaler som kan processas i en dator. Bitupplösningen i AD-omvandlaren avgör hur många nivåer som kan användas för att representera den analoga signalen. Ju högre bitupplösning desto fler nivåer och därmed en mer noggrann representation, men detta leder även till högre beräkningskomplexitet och effektförbrukning. Mixade AD-omvandlare försöker balansera mellan hög prestanda och låg komplexitet genom att optimera bitupplösningen på varje antenn i ett Massiv MIMO system. Avhandlingens resultat visar att det går att öka SE i Massiv MIMO genom att använda överlagrade piloter, ifall den föreslagna algoritmen MICED (Massive-MIMO iterative channel estimation and decoding) används. Förbättringarna är särskilt stora när användarna har hög mobilitet, när en hög bärfrekvens används eller när antalet rumsligt multiplexade användare är högt. När det gäller mixade AD-omvandlare så kan små förbättringar i SE uppnås, jämfört med konventionell Massiv MIMO, när bitupplösningen i AD-omvandlarna optimeras under förutsättning att signalstyrkan varierar mellan basstationens antenner. Sammanfattningsvis så kan de alternativa designerna av Massiv MIMO som studerats i avhandlingen ge små prestandaförbättringar jämfört med konventionella metoder. Men trots detta så kan de konventionella metoderna uppnå en bra avvägning mellan hög prestanda och låg komplexitet ifall de optimeras väl.




Physical Layer Security Issues in Massive MIMO and GNSS


Book Description

Wireless communication technology has evolved rapidly during the last 20 years. Nowadays, there are huge networks providing communication infrastructures to not only people but also to machines, such as unmanned air and ground vehicles, cars, household appliances and so on. There is no doubt that new wireless communication technologies must be developed, that support the data traffic in these emerging, large networks. While developing these technologies, it is also important to investigate the vulnerability of these technologies to different malicious attacks. In particular, spoofing and jamming attacks should be investigated and new countermeasure techniques should be developed. In this context, spoofing refers to the situation in which a receiver identifies falsified signals, that are transmitted by the spoofers, as legitimate or trustable signals. Jamming, on the other hand, refers to the transmission of radio signals that disrupt communications by decreasing the signal-to-interference-and-noise ratio (SINR) on the receiver side. In this thesis, we analyze the effects of spoofing and jamming both on global navigation satellite system (GNSS) and on massive multiple-input multiple-output (MIMO) communications. GNSS is everywhere and used to provide location information. Massive MIMO is one of the cornerstone technologies in 5G. We also propose countermeasure techniques to the studied spoofing and jamming attacks. More specifically, in paper A we analyze the effects of distributed jammers on massive MIMO and answer the following questions: Is massive MIMO more robust to distributed jammers compared with previous generation’s cellular networks? Which jamming attack strategies are the best from the jammer’s perspective, and can the jamming power be spread over space to achieve more harmful attacks? In paper B, we propose a detector for GNSS receivers that is able to detect multiple spoofers without having any prior information about the attack strategy or the number of spoofers in the environment.




Blind Massive MIMO Base Stations


Book Description

Massive MIMO (Multiple-Input--Multiple-Output) is a cellular-network technology in which the base station is equipped with a large number of antennas and aims to serve several different users simultaneously, on the same frequency resource through spatial multiplexing. This is made possible by employing efficient beamforming, based on channel estimates acquired from uplink reference signals, where the base station can transmit the signals in such a way that they add up constructively at the users and destructively elsewhere. The multiplexing together with the array gain from the beamforming can increase the spectral efficiency over contemporary systems. One challenge of practical importance is how to transmit data in the downlink when no channel state information is available. When a user initially joins the network, prior to transmitting uplink reference signals that enable beamforming, it needs system information---instructions on how to properly function within the network. It is transmission of system information that is the main focus of this thesis. In particular, the thesis analyzes how the reliability of the transmission of system information depends on the available amount of diversity. It is shown how downlink reference signals, space-time block codes, and power allocation can be used to improve the reliability of this transmission. In order to estimate the uplink and downlink channels from uplink reference signals, which is imperative to ensure scalability in the number of base station antennas, massive MIMO relies on channel reciprocity. This thesis shows that the principles of channel reciprocity can also be exploited by a jammer, a malicious transmitter, aiming to disrupt legitimate communication between two single-antenna devices. A heuristic scheme is proposed in which the jammer estimates the channel to a target device blindly, without any knowledge of the transmitted legitimate signals, and subsequently beamforms noise towards the target. Under the same power constraint, the proposed jammer can disrupt the legitimate link more effectively than a conventional omnidirectional jammer in many cases. Massiv MIMO (eng: Multiple-Input--Multiple-Output) är en teknologi inom cellulär kommunikation som förutspås ha en betydande roll i framtida kommunikationssystem på grund av de många fördelar som denna teknologi medför. Massiv MIMO innebär att basstationen har ett stort antal antenner där varje antenn kan styras individuellt. De många antennerna gör att basstationen kan rikta de elektromagnetiska signalerna på ett sådant sätt att de förstärks på positioner där användarna befinner sig men släcks ut i övrigt. Detta i sin tur innebär att flera användare kan betjänas samtidigt, på samma frekvensband utan att de stör varandra. Detta medför att massiv MIMO kan erbjuda en högre datatakt än nutida cellulära kommunikationssystem. För att kunna rikta signalerna på ett effektivt sätt måste basstationen känna till kanalen, eller utbredningsmiljön, mellan sig själv och de användare som betjänas. När en användare precis kommer in i systemet vet basstationen inte var användaren befinner sig, men måste likväl tillgodose användaren med information om hur systemet fungerar. Nu måste alltså basstationen kommunicera med användaren, utan möjligheten att kunna rikta signalen på ett effektivt sätt. Det är detta problem som vi i huvudsak studerar i denna avhandling: hur man kan utnyttja de många antennerna på basstationen för att skicka information till användarna utan någon kanalkännedom. Vi studerar även hur en gruppantenn med många antenner, baserad på samma teknologi som massiv MIMO, kan användas som en störsändare. Störsändarens mål är att hindra kommunikationen mellan två enheter på ett effektivt sätt. En störsändare med ett stort antal antenner kan, utan någon kännedom av vad de två enheterna skickar, i många fall prestera bättre än en konventionell störsändare på grund av att störsignalen kan riktas mot en specifik enhet.




High-End Performance with Low-End Hardware


Book Description

Massive MIMO (multiple-input–multiple-output) is a multi-antenna technology for cellular wireless communication, where the base station uses a large number of individually controllable antennas to multiplex users spatially. This technology can provide a high spectral efficiency. One of its main challenges is the immense hardware complexity and cost of all the radio chains in the base station. To make massive MIMO commercially viable, inexpensive, low-complexity hardware with low linearity has to be used, which inherently leads to more signal distortion. This thesis investigates how the degenerated linearity of some of the main components—power amplifiers, analog-to-digital converters (ADCs) and low-noise amplifiers—affects the performance of the system, with respect to data rate, power consumption and out-of-band radiation. The main results are: Spatial processing can reduce PAR (peak-to-average ratio) of the transmit signals in the downlink to as low as 0B; this, however, does not necessarily reduce power consumption. In environments with isotropic fading, one-bit ADCs lead to a reduction in effective signal-to-interference-and-noise ratio (SINR) of 4dB in the uplink and four-bit ADCs give a performance close to that of an unquantized system. An analytical expression for the radiation pattern of the distortion from nonlinear power amplifiers is derived. It shows how the distortion is beamformed to some extent, that its gain never is greater than that of the desired signal, and that the gain of the distortion is reduced with a higher number of served users and a higher number of channel taps. Nonlinear low-noise amplifiers give rise to distortion that partly combines coherently and limits the possible SINR. It is concluded that spatial processing with a large number of antennas reduces the impact of hardware distortion in most cases. As long as proper attention is paid to the few sources of coherent distortion, the hardware complexity can be reduced in massive MIMO base stations to overcome the hardware challenge and make massive MIMO commercial reality. Massiv MIMO (eng: multiple-input–multiple-output) är en flerantennsteknologi för cellulär trådlös kommunikation, där basstationen använder ett stort antal individuellt styrbara antenner för att multiplexa användare i rummet. Denna teknologi kan tillhandahålla en hög spektral effektivitet. En av dess främsta utmaningar är den enorma hårdvarukomplexiteten och kostnaden hos basstationens alla radiokedjor. För att massiv MIMO skall bli kommersiellt attraktivt, måste billiga, enkla hårdvarukomponenter med låg linjäritet användas, vilket oundvikligen leder till mer signaldistorsion. Denna avhandling undersöker hur den försämrade linjäriteten hos några av huvudkomponenterna – effektförstärkare, analog-digital-omvandlare (AD-omvandlare) och lågbrusförstärkare – påverkar systemets prestanda, i termer av datatakt, effektförbrukning och utombandsstrålning. Huvudresultaten är: Rumslig signalbehandling kan reducera sändsignalernas toppvärde i nerlänken ända ner till 0dB, vilket dock inte nödvändigtvis minskar effektförbrukningen. I miljöer med isotrop fädning leder enbits-AD-omvandlare till 4dB lägre signal-till-interferens-och-brus-förhållande i upplänken, och fyrabits-AD-omvandlare ger en prestanda nära den ett system utan kvantisering kan uppnå. Ett analytiskt uttryck för strålningsmönstret för distorsionen från icke-linjära effektförstärkare härleds. Det visar hur distorsionen till viss del lobformas, att dess förstärkning aldrig är starkare än förstärkningen för den önskade signalen och att distorsionens förstärkning minskar med ett högre antal betjänade användare och ett högre antal kanaltappar. Icke-linjära lågbrusförstärkare ger upphov distorsion som delvis kombinerar koherent och begränsar det möjliga signal-till-brus-och-interferens-förhållandet. Slutsatsen är att rumslig signalbehandling med ett stort antal antenner reducerar hårdvarudistorsionens inverkan i de flesta fall. Så länge som de få källorna till koherent distorsion ges tillbörlig uppmärksamhet, kan hårdvarukomplexiteten minskas i basstationer för massiv MIMO för att övervinna hårdvaruutmaningen och göra massiv MIMO kommersiell verklighet. ????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????——???????????????——?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????