Simulation, Optimization and Control of Reactive Batch Distillation Column - for Ethyl Acetate Synthesis


Book Description

The control analysis results fairly conclude that the controllability of reactive batch distillation column depends strongly on the operating conditions, mainly the dependency of overall process feasibility on the combination of tuning parameters, reflux ratio and batch time.




Reactive Batch Distillation of Ethyl Acetate


Book Description

Reactive distillation is a multi-functional unit operation combining chemical reactor and distillation column in a single unit. Fatty acid esterification is increasingly realized as a reactive distillation (RD) process because of its formation being affected by the chemical equilibrium. In this work, a detailed mathematical dynamic rate-based model of reactive batch distillation column is formulated for ethyl acetate synthesis and presented as a system of differential and algebraic equations (DAEs). The developed model is then solved to obtain the detailed column dynamics. The simulation results provide the dynamics of reboiler and distillate compositions, ethyl acetate purity in the accumulated distillate and conversion of the reactants. These simulation results are compared with experimental data, and it indicates a very good agreement. The developed model is then applied to formulate dynamic optimization problem in order to derive the optimum operating policy, reflux profile.




Batch Distillation


Book Description

Most available books in chemical engineering mainly pertain to continuous processes, with batch distillation relegated to a small section. Filling this void in the chemical engineering literature, Batch Distillation: Simulation, Optimal Design, and Control, Second Edition helps readers gain a solid, hands-on background in batch processing. The second edition of this bestseller explores numerous new developments in batch distillation that have emerged since the publication of the first edition. New to the Second Edition Special sections on complex column configurations and azeotropic, extractive, and reactive distillation A chapter on various kinds of uncertainties in batch distillation A chapter covering software packages for batch distillation simulation, design, optimization, and control Separate chapters on complex columns and complex systems Up-to-date references and coverage of recent research articles This edition continues to explain how to effectively design, synthesize, and make operations decisions related to batch processes. Through careful treatments of uncertainty analysis, optimization, and optimal control methods, the author gives readers the necessary tools for making the best decisions in practice. While primarily designed for a graduate course in batch distillation, the text can also be used in undergraduate chemical engineering courses. In addition, researchers and academics faced with batch distillation research problems and practicing chemical engineers tackling problems in actual day-to-day operations will find the book to be a useful reference source.







Simulation of Ethyl Acetate Synthesis Via Reactive Distillation


Book Description

Ethyl acetate (EtAc) is mainly used as solvent in paints, adhesives and coatings, eliminating the use of aromatic compounds. Reactive distillation is a type of process intensification in which the separation and reaction is combined in one vessel. In this work, reactive distillation (RD) process for EtAc was implemented using process simulator Aspen HYSYS by applying the data obtained from the bibliography. A sensitive analysis was performed to determine the effects of key design and operating variables on column performance and, subsequently, an optimal column configuration was obtained.




Distillation


Book Description

The purpose of this book is to offer readers important topics on the modeling, simulation, and optimization of distillation processes. The book is divided into four main sections: the first section is introduction to the topic, the second presents work related to distillation process modeling, the third deals with the modeling of phase equilibrium, one of the most important steps of distillation process modeling, and the the fourth looks at the reactive distillation process, a process that has been applied successfully to a number of applications and has been revealed as a promising strategy for a number of recent challenges.




Batch Distillation: Design And Operation


Book Description

The batch distillation process has existed for many centuries. It is perhaps the oldest technology for separating or purifying liquid mixtures and is the most frequently used separation method in batch processes. In the last 25 years, with continuous development of faster computers and sophisticated numerical methods, there have been many published works using detailed mathematical models with rigorous physical property calculations and advanced optimisation techniques to address several important issues, such as selection of column configurations, design, operation, off-cut recycling, use of batch distillation in reactive and extractive modes, etc.Batch Distillation: Design and Operation presents excellent, important contributions of many researchers from around the globe, including those of the author and his co-workers./a




Modelling and Simulation of Ethyl Acetate Reactive Distillation Column Using ASPEN PLUS.


Book Description

In this thesis, we study the modeling and simulation of a reactive distillation column for the production of ethyl acetate from acetic acid and ethyl alcohol using ASPENPLUS. Starting from a conventional configuration, which involves feeding in a single tray, different configuration is proposed and various specifications are studied for the attainment of higher conversion and purity at the steady state. In ASPEN DYNAMICS an analysis of the column dynamics is then performed. Cascade control structure is studied for the base design.




Process Intensification


Book Description

Intensified processes have found widespread application in the chemical and petrochemical industries. The use of intensified systems allows for a reduction of operating costs and supports the “greening” of chemical processes. However, the design of intensified equipment requires special methodologies. This book describes the fundamentals and applications of these design methods, making it a valuable resource for use in both industry and academia.