Single-Domain Antibodies: Biology, Engineering and Emerging Applications


Book Description

Single-domain antibodies (sdAbs) represent the minimal antigen binding-competent form of the immunoglobulin domain and have unique properties and applications. SdAbs are naturally produced as the variable domains of the heavy chain-only antibodies of camelid ruminants and cartilaginous fishes, but can also be engineered synthetically from autonomous human or mouse VH or VL domains. The scope of this research topic and associated e-book covers current understanding and new developments in (i) the biology, immunology and immunogenetics of sdAbs in camelids and cartilaginous fishes, (ii) strategies for sdAb discovery, (iii) protein engineering approaches to increase the solubility, stability and antigen-binding affinity of sdAbs and (iv) specialized applications of sdAbs in areas such diagnostics, imaging and therapeutics.




Single-Domain Antibodies


Book Description

This volume covers current and emerging techniques for studying single-domain antibodies (sdAbs). Chapters guide readers through the biology and immunology of sdAbs in camelids and sharks, isolation of sdAbs, protein engineering approaches to optimize the solubility, stability, valency and antigen binding affinity of sdAbs, and specialized applications of sdAbs. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Single-Domain Antibodies: Methods and Protocols aims to be a useful, practical guide to help researchers further their studies in this field.




Cancer Nanotheranostics


Book Description

Nanotechnology is an interdisciplinary research field that integrates chemistry, engineering, biology, and medicine. Nanomaterials offer tremendous opportunity as well as challenges for researchers. Of course, cancer is one of the world's most common health problems, responsible for many deaths. Exploring efficient anticancer drugs could revolutionize treatment options and help manage cancer mortality. Nanomedicine plays a significant role in developing alternative and more effective treatment strategies for cancer theranostics. This book mainly focuses on the emerging trends using nanomaterials and nanocomposites as alternative anticancer material’s. The book is divided into three main topic areas: how to overcome existing traditional approaches to combat cancer, applying multiple mechanisms to target the cancer cells, and how nanomaterials can be used as effective carriers. The contents highlight recent advances in interdisciplinary research on processing, morphology, structure, and properties of nanostructured materials and their applications to combat cancer.Cancer Nanotheranostics is comprehensive in that it discusses all aspects of cancer nanotechnology. Because of the vast amount of information, it was decided to split this material into two volumes. In the first volume of Cancer Nanotheranostics, we discuss the role of different nanomaterials for cancer therapy, including lipid-based nanomaterials, protein and peptide-based nanomaterials, polymer-based nanomaterials, metal-organic nanomaterials, porphyrin-based nanomaterials, metal-based nanomaterials, silica-based nanomaterials, exosome-based nanomaterials and nano-antibodies. In the second volume, we discuss the nano-based diagnosis of cancer, nano-oncology for clinical applications, nano-immunotherapy, nano-based photothermal cancer therapy, nano-erythrosomes for cancer drug delivery, regulatory perspectives of nanomaterials, limitations of cancer nanotheranostics, the safety of nano-biomaterials for cancer nanotheranostics, multifunctional nanomaterials for targeting cancer nanotheranostics, and the role of artificial intelligence in cancer nanotheranostics.




Nanobody


Book Description

Nanobodies have become outstanding tools for biomedical research, diagnostics and therapy. Recent advances in the identification and functionalization of target-specific nanobodies now make nanobody-based approaches broadly available to many researches in the field. This book provides a compilation of original research articles and comprehensive reviews covering important and up to date aspects of research on nanobodies and their applications for immunoassays, proteomics, protein crystallization and in vitro and in vivo imaging.




Handbook of Therapeutic Antibodies


Book Description

Dieses Nachschlagewerk zu therapeutischen Antikörpern sucht auch in der komplett überarbeiteten 2. Auflage seinesgleichen und bietet 30 % neue Inhalte zu Entwicklung, Herstellung und therapeutischen Anwendungen dieser Biomoleküle.




Antibody Engineering


Book Description

The last decade has witnessed remarkable developments in antibody research and its therapeutic applications. With the methods of molecular biology it is now possible to manipulate the specificities and activities of antibody molecules to generate an almost limitless array of structures for both basic investigations and the clinical setting. The contributions to this volume cover all three domains of the antibody: the variable regions, the relatively neglected but crucial hinge, and the constant region. These studies provide critical structural and functional information about antibodies, while also pointing the way to the construction of molecules with enhanced or even novel properties. Bringing together major experts on antibody engineering, this book is highly recommended to faculty, postdoctoral fellows and graduate students in molecular biology, microbiology, immunology, cancer research and genetics.




Cell-Free Synthetic Biology


Book Description

This book describes advanced studies in cell-free synthetic biology, an emerging biotechnology that focuses on cell-free protein synthesis and cell-free systems for fundamental and industrial research in areas such as genetic circuit design, small-molecule synthesis, complicated-macromolecule synthesis, unnatural-macromolecule synthesis, high-throughput screening, artificial cells, and biomaterials. Cell-free synthetic biology is now an integral part of developing fields like nanotechnology, materials science, and personalized medicine. The book discusses the main research directions in the development of cell-free systems, as well as a number of applications of cell-free synthetic biology, ranging from structural biology to the human health industry. It is intended for students and researchers in life sciences, synthetic biology, bioengineering, and chemical engineering.




Protein Engineering


Book Description

A one-stop reference that reviews protein design strategies to applications in industrial and medical biotechnology Protein Engineering: Tools and Applications is a comprehensive resource that offers a systematic and comprehensive review of the most recent advances in the field, and contains detailed information on the methodologies and strategies behind these approaches. The authors—noted experts on the topic—explore the distinctive advantages and disadvantages of the presented methodologies and strategies in a targeted and focused manner that allows for the adaptation and implementation of the strategies for new applications. The book contains information on the directed evolution, rational design, and semi-rational design of proteins and offers a review of the most recent applications in industrial and medical biotechnology. This important book: Covers technologies and methodologies used in protein engineering Includes the strategies behind the approaches, designed to help with the adaptation and implementation of these strategies for new applications Offers a comprehensive and thorough treatment of protein engineering from primary strategies to applications in industrial and medical biotechnology Presents cutting edge advances in the continuously evolving field of protein engineering Written for students and professionals of bioengineering, biotechnology, biochemistry, Protein Engineering: Tools and Applications offers an essential resource to the design strategies in protein engineering and reviews recent applications.




Structural Biology in Immunology


Book Description

Structural Biology in Immunology, Structure/Function of Novel Molecules of Immunologic Importance delivers important information on the structure and functional relationships in novel molecules of immunologic interest. Due to an increasingly sophisticated understanding of the immune system, the approach to the treatment of many immune-mediated diseases, including multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease has been dramatically altered. Furthermore, there is an increasing awareness of the critical role of the immune system in cancer biology. The improved central structure function relationships presented in this book will further enhance our ability to understand what defects in normal individuals can lead to disease. - Describes novel/recently discovered immunomodulatory proteins, including antibodies and co-stimulatory or co-inhibitory molecules - Emphasizes new biologic and small molecule drug design through the exploration of structure-function relationship - Features a collaborative editorial effort, involving clinical immunologists and structural biologists - Provides useful and practical insights on developing the necessary links between basic science and clinical therapy in immunology - Gives interested parties a bridge to learn about computer modeling and structure based design principles




The Science and Applications of Synthetic and Systems Biology


Book Description

Many potential applications of synthetic and systems biology are relevant to the challenges associated with the detection, surveillance, and responses to emerging and re-emerging infectious diseases. On March 14 and 15, 2011, the Institute of Medicine's (IOM's) Forum on Microbial Threats convened a public workshop in Washington, DC, to explore the current state of the science of synthetic biology, including its dependency on systems biology; discussed the different approaches that scientists are taking to engineer, or reengineer, biological systems; and discussed how the tools and approaches of synthetic and systems biology were being applied to mitigate the risks associated with emerging infectious diseases. The Science and Applications of Synthetic and Systems Biology is organized into sections as a topic-by-topic distillation of the presentations and discussions that took place at the workshop. Its purpose is to present information from relevant experience, to delineate a range of pivotal issues and their respective challenges, and to offer differing perspectives on the topic as discussed and described by the workshop participants. This report also includes a collection of individually authored papers and commentary.