Single-Electron Tunneling and Mesoscopic Devices


Book Description

Single-electron tunneling (SET) and related phenomena have recently come to be considered as "hot topics". This also became apparent when we organized the 4th International Conference on Superconducting and Quantum Effect Devices and Their Applications, SQUID'91, which was held June 18-21, 1991, in Berlin, Germany. Impressed by the number of contributions dedicated to the new physics of ultrasmall devices, we deemed it appropriate to devote this volume of the Springer Series in Electronics and Photonics to these specialized proceedings. The other contributions presented at SQUID'91, which are more conventional in character but nevertheless contain excitingly innovative results, are published separately as Volume 64 of the series Springer Proceedings in Physics. At first glance it seems strange that a conference abbreviated SQUID'91 should attract so many papers on non-superconducting devices, and in fact the first SQUID'XX conferences dealt exclusively with the physics and technology of Josephson junctions, SQUIDs and other superconducting devices and their ap plications. However, many concepts developed for superconducting devices, like tunneling, flux quantization, and flux-charge conjugation, appeared to be suitable for ultrasmall non-superconducting structures as well, and many researchers in the field of superconducting devices extended their activities accordingly. Thus the extension of the conference programme evolved quite informally. Meanwhile, the meetings established themselves as well-known conference series tradition ally appreciated by the SQUID community for its balanced mixture of physics and technology, review and preview. SQUID'XX became a kind of a trademark.




Quantum-based Electronic Devices and Systems


Book Description

This volume includes highlights of the theories and experimental findings that underlie essential phenomena occurring in quantum-based devices and systems as well as the principles of operation of selected novel quantum-based electronic devices and systems. A number of the emerging approaches to creating new types of quantum-based electronic devices and systems are also discussed.




Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics


Book Description

Quantum mechanical laws are well documented at the level of a single or a few atoms and are here extended to systems containing 102 to 1010 electrons - still much smaller than the usual macroscopic objects, but behaving in a manner similar to a single atom. Besides the purely theoretical interest, such systems pose a challenge to the achievement of the ultimate microelectronic applications. The present volume presents an up-to-date account of the physics, technology and expected applications of quantum effects in solid-state mesoscopic structures. Physical phenomena include the Aharonov-Bohm effect, persistent currents, Coulomb blockade and Coulomb oscillations in single electron devices, Andreev reflections and the Josephson effect in superconductor/normal/superconductor systems, shot noise suppression in microcontacts and contact resistance quantisation, and overall quantum coherence in mesoscopic and nanoscopic structures related to the emerging physics of quantum computation in the solid-state environment.




Quantum-based Electronic Devices And Systems, Selected Topics In Electronics And Systems, Vol 14


Book Description

This volume includes highlights of the theories and experimental findings that underlie essential phenomena occurring in quantum-based devices and systems as well as the principles of operation of selected novel quantum-based electronic devices and systems. A number of the emerging approaches to creating new types of quantum-based electronic devices and systems are also discussed.







Computational Single-Electronics


Book Description

From the reviews: "This is a well written book offering a clear and detailed insight into physical processes and numerical procedures essential to the single-electron dynamics in electro-conducting media." Zentralblatt für Mathematik und ihre Grenzgebiete




Mesoscopic Systems


Book Description

Future high-tech applications such as nanotechnology require a deep understanding of the physics of mesoscopic systems. These systems form a bridge between macroscopic systems governed by classical physics and microscopic systems governed by quantum physics. This introduction discusses a variety of typical surface, optical, transport, and magnetic properties of mesoscopic systems with reference to many experimental observations. It is written for physicists, materials scientists and engineers who want to stay abreast of current research or high-tech development.




Single-electron Devices and Circuits in Silicon


Book Description

This book provides a review of research on single-electron devices and circuits in silicon. It considers the design, fabrication, and characterization of single-electron transistors, single-electron memory devices, few-electron transfer devices such as electron pumps and turnstiles, and single-electron logic devices. In all cases, a review of various device designs is provided, and in many cases, the devices developed during the author's own research work are used as detailed examples. An introduction to the physics of the single-electron charging effects is also provided.




Electronic Transport in Mesoscopic Systems


Book Description

Advances in semiconductor technology have made possible the fabrication of structures whose dimensions are much smaller than the mean free path of an electron. This book gives a thorough account of the theory of electronic transport in such mesoscopic systems. After an initial chapter covering fundamental concepts, the transmission function formalism is presented, and used to describe three key topics in mesoscopic physics: the quantum Hall effect; localisation; and double-barrier tunnelling. Other sections include a discussion of optical analogies to mesoscopic phenomena, and the book concludes with a description of the non-equilibrium Green's function formalism and its relation to the transmission formalism. Complete with problems and solutions, the book will be of great interest to graduate students of mesoscopic physics and nanoelectronic device engineering, as well as to established researchers in these fields.




CFN Lectures on Functional Nanostructures


Book Description

This book contains a selection of lectures from the first Summer School organized by the Center for Functional nanostructures (CFN) at the University of Karlsruhe. The mission of the CFN is to carry out research in the following areas: nanophotonics, nanoelectronics, molecular nanostructures and nanostructured materials. The aim of the summer schools is mainly to exchange new ideas and illustrate emerging research methodologies through a series of lectures. This is reflected by both the selection of topics addressed in the present volume as well as the tutorial aspect of the contributions.