Single Molecule Detection in Solution


Book Description

The detection of single molecules opens up new horizons in analytical chemistry, biology and medicine. This discipline, which belongs to the expanding field of nanoscience, has been rapidly emerging over the last ten years. This handbook provides a thorough overview of the field. It begins with basics of single molecule detection in solution, describes methods and devices (fluorescense correlation spectroscopy, surface enhanced Raman scattering, sensors, especially dyes, screening techniques, especially confocal laser scanning microscopy). In the second part, various applications in life sciences and medicine provide the latest research results. This modern handbook is a highly accessible reference for a broad community from advanced researchers, specialists and company professionals in physics, spectroscopy, biotechnology, analytical chemistry, and medicine. Written by leading authorities in the field, it is timely and fills a gap - up to now there exists no handbook concerning this theme.




Single-Molecule Optical Detection, Imaging and Spectroscopy


Book Description

Single Molecule Spectroscopy is one of the hottest topics in today's chemistry. It brings us close to the the most exciting vision generations of chemists have been dreaming of: To observe and examine single molecules! While most of chemistry deals with myriads of molecules, this books presents the latest developments for the detection and investigation of single entities. Written by internationally renowned authors, it is a thorough and comprehensive survey of current methods and their applications.




Single Molecule Spectroscopy


Book Description

The topics range from single molecule experiments in quantum optics and solid-state physics to analogous investigations in physical chemistry and biophysics.




Handbook of Single-Molecule Biophysics


Book Description

This handbook describes experimental techniques to monitor and manipulate individual biomolecules, including fluorescence detection, atomic force microscopy, and optical and magnetic trapping. It includes single-molecule studies of physical properties of biomolecules such as folding, polymer physics of protein and DNA, enzymology and biochemistry, single molecules in the membrane, and single-molecule techniques in living cells.




Calcium Entry Channels in Non-Excitable Cells


Book Description

Calcium Entry Channels in Non-Excitable Cells focuses on methods of investigating the structure and function of non-voltage gated calcium channels. Each chapter presents important discoveries in calcium entry pathways, specifically dealing with the molecular identification of store-operated calcium channels which were reviewed by earlier volumes in the Methods in Signal Transduction series. Crystallographic and pharmacological approaches to the study of calcium channels of epithelial cells are also discussed. Calcium ion is a messenger in most cell types. Whereas voltage gated calcium channels have been studied extensively, the non-voltage gated calcium entry channel genes have only been identified relatively recently. The book will fill this important niche.




Fluorescence Correlation Spectroscopy


Book Description

This is the first book-length treatment of both the theoretical background to fluorescence correlation spectroscopy (FCS) and a variety of applications in various fields of science. The high spatial and temporal resolution of FCS has made it a powerful tool for the analysis of molecular interactions and kinetics, transport properties due to thermal motion, and flow. It contains an essential contribution from Nobel Prize winner M. Eigen, who is credited with inventing FCS.




Single Molecule Analysis


Book Description

Life scientists believe that life is driven, directed, and shaped by biomolecules working on their own or in concert. It is only in the last few decades that technological breakthroughs in sensitive fluorescence microscopy and single-molecule manipulation techniques have made it possible to observe and manipulate single biomolecules and measure their individual properties. The methodologies presented in Single Molecule Techniques: Methods and Protocols are being applied more and more to the study of biologically relevant molecules, such as DNA, DNA-binding proteins, and motor proteins, and are becoming commonplace in molecular biophysics, biochemistry, and molecular and cell biology. The aim of Single Molecule Techniques: Methods and Protocols is to provide a broad overview of single-molecule approaches applied to biomolecules on the basis of clear and concise protocols, including a solid introduction to the most widely used single-molecule techniques, such as optical tweezers, single-molecule fluorescence tools, atomic force microscopy, magnetic tweezers, and tethered particle motion. Written in the highly successful Methods in Molecular BiologyTM series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Single Molecule Techniques: Methods and Protocols serves as an ideal guide to scientists of all backgrounds and provides a broad and thorough overview of the exciting and still-emerging field of single-molecule biology.




Single-molecule Techniques


Book Description

Geared towards research scientists in structural and molecular biology, biochemistry, and biophysics, this manual will be useful to all who are interested in observing, manipulating and elucidating the molecular mechanisms and discrete properties of macromolecules.




Spectroscopy and Dynamics of Single Molecules


Book Description

Spectroscopy and Dynamics of Single Molecules: Methods and Applications reviews the most recent developments in spectroscopic methods and applications. Spectroscopic techniques are the chief experimental methods for testing theoretical models and research in this area plays an important role in stimulating new theoretical developments in physical chemistry. This book provides an authoritative insight into the latest advances in the field, highlighting new techniques, current applications, and potential future developments An ideal reference for chemists and physicists alike, Spectroscopy and Dynamics of Single Molecules: Methods and Applications is a useful guide for all those working in the research, design, or application of spectroscopic tools and techniques across a wide range of fields. - Includes the latest research on ultrafast vibrational and electronic dynamics, nonlinear spectroscopies, and single-molecule methods - Makes the content accessible to researchers in chemistry, biophysics, and chemical physics through a rigorous multi-disciplinary approach - Provides content edited by a world-renowned chemist with more than 30 years of experience in research and instruction




Principles of Fluorescence Spectroscopy


Book Description

The third edition of this established classic text reference builds upon the strengths of its very popular predecessors. Organized as a broadly useful textbook Principles of Fluorescence Spectroscopy, 3rd edition maintains its emphasis on basics, while updating the examples to include recent results from the scientific literature. The third edition includes new chapters on single molecule detection, fluorescence correlation spectroscopy, novel probes and radiative decay engineering. Includes a link to Springer Extras to download files reproducing all book artwork, for easy use in lecture slides. This is an essential volume for students, researchers, and industry professionals in biophysics, biochemistry, biotechnology, bioengineering, biology and medicine.