Perspectives in Theoretical Physics


Book Description

Evgenii Mikhailovich Lifshitz is perhaps best known for his long association with his mentor Lev D Landau, with whom he co-wrote the classic Course of Theoretical Physics, but he was a noted and respected Soviet physicist in his own right. Born in the Ukraine to a scientific family, his long and distinguished career will be remembered for three things - his collaboration with Landau on the internationally acclaimed Course of Theoretical Physics, his work as editor of the Journal of Experimental and Theoretical Physics, and his scientific papers. As well as his work with Landau, E\M\Lifshitz collaborated with many noted Soviet scientists such as I\M\Khalatnikov, I\E\Dyzaloshinskii, V\V\Sudakov, V\A\Belinskii and the editor of this book, L\P\Pitaevskii. Many of the papers presented in this book include their contribution. Collected together they give a comprehensive and penetrating insight into the man and his work, clearly showing Lifshitz's contribution to physics and the influences on his work.




Handbook of Radioactivity Analysis


Book Description

Handbook of Radioactivity Analysis is written by experts in the measurement of radioactivity. The book describes the broad scope of analytical methods available and instructs the reader on how to select the proper technique. It is intended as a practical manual for research which requires the accurate measurement of radioactivity at all levels, from the low levels encountered in the environment to the high levels measured in radioisotope research. This book contains sample preparation procedures, recommendations on steps to follow, necessary calculations, computer controlled analysis, and high sample throughput techniques. Each chapter includes practical techniques for application to nuclear safety, nuclear safeguards, environmental analysis, weapons disarmament, and assays required for research in biomedicine and agriculture. The fundamentals of radioactivity properties, radionuclide decay, and methods of detection are included to provide the basis for a thorough understanding of the analytical procedures described in the book. Therefore, the Handbook can also be used as a teaching text. - Includes sample preparation techniques for matrices such as soil, air, plant, water, animal tissue, and surface swipes - Provides procedures and guidelines for the analysis of commonly encountered na




Positron Spectroscopy of Solids


Book Description

The lifetime of a positron inside a solid is normally less than a fraction of nanosecond. This is a very short time on a human scale, but is long enough to enable the positron to visit an extended region of the material, and to sense the atomic and electronic structure of the environment. Thus, we can inject a positron in a sample to draw from it some signal giving us information on the microscopic properties of the material. This idea has been successfully developed in a number of positron-based techniques of physical analysis, with resolution in energy, momentum, or position. The complex of these techniques is what we call now positron spectroscopy of solids. The field of application of the positron spectroscopy extends from advanced problems of solid-state physics to industrial applications in the area of characterization of high-tech materials. This volume focuses the attention on the physics that can be learned from positron-based methods, but also frames those methods in a wider context including other experimental approaches. It can be considered as a textbook on positron spectroscopy of solids, the sort of book that the newcomer takes for his approach to this field, but also as a useful research tool for the expert.




Quantum Electrodynamics


Book Description

We are pleased by the positive resonance of our book which now necessitates a fourth edition. We have used this opportunity to implement corrections of misprints and amendments at several places, and to extend and improve the discussion of many of the exercises and examples. We hope that our presentation of the method of equivalent photons (Example 3. 17), the form factor of the electron (Example 5. 7), the infrared catastrophe (Example 5. 8) and the energy shift of atomic levels (Example 5. 9)arenow even better to understand. The new Exercise 5. 10 shows in detail how to arrive at the non-relativistic limit for the calculation of form factors. Moreover, we have brought up-to-date the Biographical Notes about physicists who have contributed to the dev- opment of quantum electrodynamics, and references to experimental tests of the t- ory. For example, there has been recent progress in the determination of the electric and magnetic form factors of the proton (discussed in Exercise 3. 5 on the Rosenbluth formula) and the Lamb shift of high-Z atoms (discussed in Example 5. 9 on the energy shift of atomic levels), while the experimental veri cation of the birefringence of the QED vacuum in a strong magnetic eld (Example 7. 8) remains unsettled and is a topic of active ongoing research.




Principles and Applications of Positron & Positronium Chemistry


Book Description

This book provides a comprehensive description of the principles and applications of positron and positronium chemistry. Pedagogical and tutorial in nature, it will be ideal for graduate students and researchers in the area of positron annihilation spectroscopy. The contributing authors are authoritative scientists prominent in the frontiers of research, actively pursuing positron annihilation research on chemical and applied systems. Contents: Introduction to Positron and Positronium Chemistry (Y C Jean et al.); Compounds of Positrons and Positronium (D M Schrader); Experimental Techniques in Positron Spectroscopy (P G Coleman); Organic and Inorganic Chemistry of the Positron and Positronium (G Duplotre & I Billard); Physical and Radiation Chemistry of the Positron and Positronium (S V Stepanov & V M Byakov); Positrons and Positronium in the Gas Phase (D M Schrader); Positron Porosimetry (M H Weber & K G Lynn); Positron Annihilation Studies on Superconducting Materials (C S Sundar); Positronium in Si and SiO 2 Thin Films (R Suzuki); Applications to Polymers (P E Mallon); Applications of Slow Positrons to Polymeric Surfaces and Coatings (Y C Jean et al.); Positron Annihilation Induced Auger Spectroscopy (S Amdani et al.); Characterization of Nanoparticle and Nanopore Materials (J Xu); AMOC in Positron and Positronium Chemistry (H Stoll et al.). Readership: Materials science researchers; physical chemists; polymer scientists and engineers; chemical and mechanical engineers; solid state physicists; graduate students in chemistry, physics, engineering and polymer science; coating industry researchers."




University Physics


Book Description

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.




A Certain Uncertainty


Book Description

Based around a series of real-life scenarios, this engaging introduction to statistical reasoning will teach you how to apply powerful statistical, qualitative and probabilistic tools in a technical context. From analysis of electricity bills, baseball statistics, and stock market fluctuations, through to profound questions about physics of fermions and bosons, decaying nuclei, and climate change, each chapter introduces relevant physical, statistical and mathematical principles step-by-step in an engaging narrative style, helping to develop practical proficiency in the use of probability and statistical reasoning. With numerous illustrations making it easy to focus on the most important information, this insightful book is perfect for students and researchers of any discipline interested in the interwoven tapestry of probability, statistics, and physics.




Single Photon Manipulation


Book Description

This short book aims to present basic information about single photons in a quick read but with not many details. For this purpose, it only introduces the basic concept of single photons, the most important method of generating single photons in experiments, and a specific emerging field.




Particle Physics Reference Library


Book Description

This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access




Universe of Particles


Book Description

Modern physics is full of mathematical formulas, and woefully lacking in simple explanations. Its jargon is convoluted and strange. How are we for example to imagine a two dimensional energy momentum, or a ten dimensional string. We are told that space is curved. But what does that mean?Yet, the formulas that have been produced over the years have been impressively accurate and demonstrably correct. Modern engineering would be impossible without them. For all its complexity and weirdness, modern physics works in real life, and the consensus is that we really do live in a weird world, pretty much unfathomable to mere mortals.However, the interpretations that have been derived from observations and formulas may in fact be incorrect. A much simpler physics, outlined in this book, yields very similar results. It is similar to modern quantum mechanics, but with a number of key differences in interpretation, most important of them being that there are no mysterious variables that can only be understood in mathematical terms. Everything is explained in terms of particles hooking up with each other to produce structures, or bumping into each other to produce force. This makes for a radically simpler explanation of the observed universe.