Singularities in Gravitational Systems


Book Description

Chaos theory plays an important role in modern physics and related sciences, but -, the most important results so far have been obtained in the study of gravitational systems applied to celestial mechanics. The present set of lectures introduces the mathematical methods used in the theory of singularities in gravitational systems, reviews modeling techniques for the simulation of close encounters and presents the state of the art about the study of diffusion of comets, wandering asteroids, meteors and planetary ring particles. The book will be of use to researchers and graduate students alike.




Singularity Theory and Gravitational Lensing


Book Description

This monograph is the first to develop a mathematical theory of gravitational lensing. The theory applies to any finite number of deflector planes and highlights the distinctions between single and multiple plane lensing. Introductory material in Parts I and II present historical highlights and the astrophysical aspects of the subject. Part III employs the ideas and results of singularity theory to put gravitational lensing on a rigorous mathematical foundation.




Gravitational Collapse and Spacetime Singularities


Book Description

Physical phenomena in astrophysics and cosmology involve gravitational collapse in a fundamental way. The final fate of a massive star when it collapses under its own gravity at the end of its life cycle is one of the most important questions in gravitation theory and relativistic astrophysics, and is the foundation of black hole physics. General relativity predicts that continual gravitational collapse gives rise to a space-time singularity. Quantum gravity may take over in such regimes to resolve the classical space-time singularity. This book investigates these issues, and shows how the visible ultra-dense regions arise naturally and generically as an outcome of dynamical gravitational collapse. It will be of interest to graduate students and academic researchers in gravitation physics, fundamental physics, astrophysics, and cosmology. It includes a detailed review of research into gravitational collapse, and several examples of collapse models are investigated in detail.




The Cosmological Singularity


Book Description

This book mathematically derives the theory underlying the Belinski-Khalatnikov-Lifshitz conjecture on the general solution of the Einstein equations with a cosmological singularity.




The Analysis of Space-Time Singularities


Book Description

The different possible singularities are defined and the mathematical methods needed to extend the space-time are described in detail in this book. Results obtained (many appearing here for the first time) show that singularities are associated with a lack of smoothness in the Riemann tensor.




Perspectives in Theoretical Physics


Book Description

Evgenii Mikhailovich Lifshitz is perhaps best known for his long association with his mentor Lev D Landau, with whom he co-wrote the classic Course of Theoretical Physics, but he was a noted and respected Soviet physicist in his own right. Born in the Ukraine to a scientific family, his long and distinguished career will be remembered for three things - his collaboration with Landau on the internationally acclaimed Course of Theoretical Physics, his work as editor of the Journal of Experimental and Theoretical Physics, and his scientific papers. As well as his work with Landau, E\M\Lifshitz collaborated with many noted Soviet scientists such as I\M\Khalatnikov, I\E\Dyzaloshinskii, V\V\Sudakov, V\A\Belinskii and the editor of this book, L\P\Pitaevskii. Many of the papers presented in this book include their contribution. Collected together they give a comprehensive and penetrating insight into the man and his work, clearly showing Lifshitz's contribution to physics and the influences on his work.




Analytical, Approximate-Analytical and Numerical Methods in the Design of Energy Analyzers


Book Description

Advances in Imaging and Electron Physics merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contains contributions from leading authorities on the subject matter Informs and updates on all the latest developments in the field of imaging and electron physics Provides practitioners interested in microscopy, optics, image processing, mathematical morphology, electromagnetic fields, electron, and ion emission with a valuable resource Features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image processing




Bangs, Crunches, Whimpers, and Shrieks


Book Description

Others hoped that peaceful coexistence with singularities could be achieved by proving a form of Roger Penrose's "cosmic censorship" hypothesis, which would place singularities safely inside black holes.




Gravitational Lenses


Book Description

Light observed from distant objects is found to be deflected by the gravitational field of massive objects near the line of sight - an effect predicted by Einstein in his first paper setting forth the general theory of relativity, and confirmed by Eddington soon afterwards. If the source of the light is sufficiently distant and bright, and if the intervening object is massive enough and near enough to the line of sight, the gravitational field acts like a lens, focusing the light and producing one or more bright images of the source. This book, by renowned researchers in the field, begins by discussing the basic physics behind gravitational lenses: the optics of curved space-time. It then derives the appropriate equations for predicting the properties of these lenses. In addition, it presents up-to-date observational evidence for gravitational lenses and describes the particular properties of the observed cases. The authors also discuss applications of the results to problems in cosmology.




Topics On Strong Gravity: A Modern View On Theories And Experiments


Book Description

'The book concentrates attention on extended alternative theories of gravity and on the best astrophysical laboratories to probe the strong gravity-field regime: black holes, pulsars and neutron stars … Readers will likely share the satisfaction the editor and contributors say they experienced as they organized the book.'SirReadaLotFor more than a century, our understanding of gravitational physics was based on Albert Einstein's theory of General Relativity, which fundamentally changed our understanding of the Universe, its origin, and its evolutionary process. General Relativity accurately describes a large number of phenomena on very different scales. As such, it has been very well tested and its remarkable predictions are compatible with most experimental and observational data. However, the observational and experimental results compatible with General Relativity fall in its vast majority under the weak gravitational field regime. In recent years, discrepancies between the data and the corresponding predictions of General Relativity have been observed and have generated intense research activity. One of the most critical aspects of General Relativity is the presence of singularities in extreme physical situations. These discrepancies indicate that either the parameters of the theory must be modified in the regime of strong field gravity/high energy and large space-time curvature, or the theory itself should be modified. In this book, we focus our attention on extended alternative gravity theories and the best astrophysical laboratories to probe the strong field regime: black holes, pulsars, and neutron stars.