Epigenetics in Psychiatry


Book Description

Epigenetics in Psychiatry, Second Edition covers all major areas of psychiatry in which extensive epigenetic research has been performed, fully encompassing a diverse and maturing field, including drug addiction, bipolar disorder, epidemiology, cognitive disorders, and the uses of putative epigenetic-based psychotropic drugs. Uniquely, each chapter correlates epigenetics with relevant advances across genomics, transcriptomics, and proteomics. The book acts as a catalyst for further research in this growing area of psychiatry. This new edition has been fully revised to address recent advances in epigenetic understanding of psychiatric disorders, evoking data consortia (e.g., CommonMind, ATAC-seq), single cell analysis, and epigenome-wide association studies to empower new research. The book also examines epigenetic effects of the microbiome on psychiatric disorders, and the use of neuroimaging in studying the role of epigenetic mechanisms of gene expression. Ongoing advances in epigenetic therapy are explored in-depth. - Fully revised to discuss new areas of research across neuronal stem cells, cognitive disorders, and transgenerational epigenetics in psychiatric disease - Relates broad advances in psychiatric epigenetics to a modern understanding of the genome, transcriptome, and proteins - Catalyzes knowledge discovery in both basic epigenetic biology and epigenetic targets for drug discovery - Provides guidance in research methods and protocols, as well how to employ data from consortia, single cell analysis, and epigenome-wide association studies (EWAS) - Features chapter contributions from international leaders in the field




Small Non-Coding RNAs


Book Description

This volume contains state-of-the-art methods tackling all aspects of small non-coding RNAs biology. Small Non-Coding RNAs: Methods and Protocols guides readers through customized dedicated protocols and technologies that will be of valuable help to all those willing to contribute deciphering the numerous functions of small non-coding RNAs. Written in the highly successful Methods of Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and key tips on troubles troubleshooting and avoiding known pitfalls. Instructive and practical, Small Non-Coding RNAs: Methods and Protocols reaches out to biochemists, cellular and molecular biologists already working in the field of RNA biology and to those just starting to study small non-coding RNAs.




Long Noncoding RNAs in Plants


Book Description

The growth of human population has increased the demand for improved yield and quality of crops and horticultural plants. However, plant productivity continues to be threatened by stresses such as heat, cold, drought, heavy metals, UV radiations, bacterial and fungal pathogens, and insect pests. Long noncoding RNAs are associated with various developmental pathways, regulatory systems, abiotic and biotic stress responses and signaling, and can provide an alternative strategy for stress management in plants. Long Noncoding RNAs in Plants: Roles in development and stress provides the most recent advances in LncRNAs, including identification, characterization, and their potential applications and uses. Introductory chapters include the basic features and brief history of development of lncRNAs studies in plants. The book then provides the knowledge about the lncRNAs in various important agricultural and horticultural crops such as cereals, legumes, fruits, vegetables, and fiber crop cotton, and their roles and applications in abiotic and biotic stress management. - Includes the latest advances and research in long noncoding RNAs in plants - Provides alternative strategies for abiotic and biotic stress management in horticultural plants and agricultural crops - Focuses on the application and uses of long noncoding RNAs




Small RNAs:


Book Description

In recent years, the discovery of functional small RNAs has brought about an unprecedented revolution within the field of molecular biology. This volume describes strategies for the discovery and validation of small RNAs. It provides a snapshot of our current understanding of the different mechanisms triggered by small RNAs and the variations encountered in different organisms.




Bioinformatics for Beginners


Book Description

Bioinformatics for Beginners: Genes, Genomes, Molecular Evolution, Databases and Analytical Tools provides a coherent and friendly treatment of bioinformatics for any student or scientist within biology who has not routinely performed bioinformatic analysis. The book discusses the relevant principles needed to understand the theoretical underpinnings of bioinformatic analysis and demonstrates, with examples, targeted analysis using freely available web-based software and publicly available databases. Eschewing non-essential information, the work focuses on principles and hands-on analysis, also pointing to further study options. - Avoids non-essential coverage, yet fully describes the field for beginners - Explains the molecular basis of evolution to place bioinformatic analysis in biological context - Provides useful links to the vast resource of publicly available bioinformatic databases and analysis tools - Contains over 100 figures that aid in concept discovery and illustration




Chromatin Signaling and Diseases


Book Description

Chromatin Signaling and Diseases covers the molecular mechanisms that regulate gene expression, which govern everything from embryonic development, growth, and human pathologies associated with aging, such as cancer. This book helps researchers learn about or keep up with the quickly expanding field of chromatin signaling. After reading this book, clinicians will be more capable of explaining the mechanisms of gene expression regulation to their patients to reassure them about new drug developments that target chromatin signaling mechanisms. For example, several epigenetic drugs that act on chromatin signaling factors are in clinical trials or even approved for usage in cancer treatments, Alzheimer's, and Huntington's diseases. Other epigenetic drugs are in development to regulate various class of chromatin signaling factors. To keep up with this changing landscape, clinicians and doctors will need to stay familiar with genetic advances that translate to clinical practice, such as chromatin signaling. Although sequencing of the human genome was completed over a decade ago and its structure investigated for nearly half a century, molecular mechanisms that regulate gene expression remain largely misunderstood. An emerging concept called chromatin signaling proposes that small protein domains recognize chemical modifications on the genome scaffolding histone proteins, facilitating the nucleation of enzymatic complexes at specific loci that then open up or shut down the access to genetic information, thereby regulating gene expression. The addition and removal of chemical modifications on histones, as well as the proteins that specifically recognize these, is reviewed in Chromatin Signaling and Diseases. Finally, the impact of gene expression defects associated with malfunctioning chromatin signaling is also explored. - Explains molecular mechanisms that regulate gene expression, which governs everything from embryonic development, growth, and human pathologies associated with aging - Educates clinicians and researchers about chromatin signaling, a molecular mechanism that is changing our understanding of human pathology - Explores the addition and removal of chemical modifications on histones, the proteins that specifically recognize these, and the impact of gene expression defects associated with malfunctioning chromatin signaling - Helps researchers learn about the quickly expanding field of chromatin signaling




Non-Coding RNAs


Book Description

General inspection of a role performed in the cell by RNAs allows us to distinguish three major groups of transcripts: I. protein-coding mRNAs, II. non-coding housekeeping and III. regulatory RNAs. The housekeeping RNAs include RNA classes that are generally, constitutively expressed and whose presence is required for normal function and viability of the cells. On the other hand, a group of regulatory RNAs includes RNA species that are expressed at certain stages of organism development or cell differentiation or as a response to external stimuli and can affect expression of other genes on the levels of transcription or translation. Non-coding RNA transcripts form a heterogeneous class of RNAs that can not be characterized by a single specific function. Initially, the term non-coding RNA (ncRNA) was used primarily to describe polyadenylated and a capped eukaryotic RNAs transcribed by RNA polymerase II, but lacking long open reading frames. Now, this definition can be extended to cover all RNA transcripts that do not show protein-coding capacity and is sometimes used to describe any RNA that does not encode protein, including introns. This book is an in-depth look at the function of Non-Coding RNAs and their relationship to Molecular Biology and Molecular Biology.




Cancer Genomics


Book Description

The discovery of microRNA (miRNA) involvement in cancer a decade ago, and the more recent findings of long non-coding RNAs in human diseases, challenged the long-standing view that RNAs without protein-coding potential are simply “junk” transcription within the human genome. These findings evidently changed the dogma that “DNA makes RNA makes protein” by showing that RNAs themselves can be essential regulators of cellular function and play key roles in cancer development. MiRNAs are evolutionarily conserved short single-stranded transcripts of 19–24 nucleotides in length. They do not code for proteins, but change the final output of protein-coding genes by regulating their transcriptional and/or translation process. Ultraconserved genes (UCGs) are non-coding RNAs with longer length (>200bp) that are transcribed from the ultraconserved genomic region. Both miRNAs and UCGs are located within cancer-associated genomic regions (CAGRs) and can act as tumor suppressors or oncogenes. In this chapter, we present principles and concepts that have been identified over the last decade with respect to our understanding of the function of non-coding RNAs, and summarize recent findings on the role of miRNAs and UCGs in cancer development. Finally, we will conclude by discussing the translational potential of this knowledge into clinical settings such as cancer diagnosis, prognosis and treatment.




Epigenetics in Human Disease


Book Description

Epigenetics is one of the fastest growing fields of sciences, illuminating studies of human diseases by looking beyond genetic make-up and acknowledging that outside factors play a role in gene expression. The goal of this volume is to highlight those diseases or conditions for which we have advanced knowledge of epigenetic factors such as cancer, autoimmune disorders and aging as well as those that are yielding exciting breakthroughs in epigenetics such as diabetes, neurobiological disorders and cardiovascular disease. Where applicable, attempts are made to not only detail the role of epigenetics in the etiology, progression, diagnosis and prognosis of these diseases, but also novel epigenetic approaches to the treatment of these diseases. Chapters are also presented on human imprinting disorders, respiratory diseases, infectious diseases and gynecological and reproductive diseases. Since epigenetics plays a major role in the aging process, advances in the epigenetics of aging are highly relevant to many age-related human diseases. Therefore, this volume closes with chapters on aging epigenetics and breakthroughs that have been made to delay the aging process through epigenetic approaches. With its translational focus, this book will serve as valuable reference for both basic scientists and clinicians alike. Comprehensive coverage of fundamental and emergent science and clinical usage Side-by-side coverage of the basis of epigenetic diseases and their treatments Evaluation of recent epigenetic clinical breakthroughs




Epigenetics Methods


Book Description

In recent years, the field of epigenetics has grown significantly, driving new understanding of human developmental processes and disease expression, as well as advances in diagnostics and therapeutics. As the field of epigenetics continues to grow, methods and technologies have multiplied, resulting in a wide range of approaches and tools researchers might employ. Epigenetics Methods offers comprehensive instruction in methods, protocols, and experimental approaches applied in field of epigenetics. Here, across thirty-five chapters, specialists offer step-by-step overviews of methods used to study various epigenetic mechanisms, as employed in basic and translational research. Leading the reader from fundamental to more advanced methods, the book begins with thorough instruction in DNA methylation techniques and gene or locus-specific methylation analyses, followed by histone modification methods, chromatin evaluation, enzyme analyses of histone methylation, and studies of non-coding RNAs as epigenetic modulators. Recently developed techniques and technologies discussed include single-cell epigenomics, epigenetic editing, computational epigenetics, systems biology epigenetic methods, and forensic epigenetic approaches. Epigenetics methods currently in-development, and their implication for future research, are also considered in-depth. In addition, as with the wider life sciences, reproducibility across experiments, labs, and subdisciplines is a growing issue for epigenetics researchers. This volume provides consensus-driven methods instruction and overviews. Tollefsbol and contributing authors survey the range of existing methods; identify best practices, common themes, and challenges; and bring unity of approach to a diverse and ever-evolving field. - Includes contributions by leading international investigators involved in epigenetic research and clinical and therapeutic application - Integrates technology and translation with fundamental chapters on epigenetics methods, as well as chapters on more novel and advanced epigenetics methods - Written at verbal and technical levels that can be understood by scientists and students alike - Includes chapters on state-of-the-art techniques such as single-cell epigenomics, use of CRISPR/Cas9 for epigenetic editing, and epigenetics methods applied to forensics