Small Unmanned Aircraft Systems Guide


Book Description

The utility and benefits of unmanned aircraft systems (UAS) are emerging and being recognized across the aviation industry. While this technology is not new, the ability to support domestic public and private operators are becoming better understood, opening up new uses to government organizations and commercial enterprise. Analysis of the unmanned aviation market indicates that small UAS (sUAS) will become the most prevalent and affordable form of unmanned aircraft available, featuring technology developed by contributors ranging from DIY and hobby model aircraft communities to defense contracting. This book will help readers understand what a drone or UAS is, what forms are available (including types of multirotor, fixed-wing, and hybrid), to make well informed decisions regarding purchase and use. Readers will learn how sUAS and their various configuration options can be used to address or support evolving business needs. Ultimately, readers will have enough information to formulate a plan to acquire necessary certification approvals and operate sUAS in a safe, efficient, and effective manner. Written for experienced aviators, as well as those new to aviation and operating in the National Airspace System. Illustrated extensively throughout, each chapter concludes with review questions for classroom and self-study use. This book provides a solid foundation for keeping up with this fast moving and exciting aviation field"--Provided by publisher




Small Unmanned Fixed-wing Aircraft Design


Book Description

Small Unmanned Fixed-wing Aircraft Design is the essential guide to designing, building and testing fixed wing UAVs (or drones). It deals with aircraft from two to 150 kg in weight and is based on the first-hand experiences of the world renowned UAV team at the UK’s University of Southampton. The book covers both the practical aspects of designing, manufacturing and flight testing and outlines and the essential calculations needed to underpin successful designs. It describes the entire process of UAV design from requirements definition to configuration layout and sizing, through preliminary design and analysis using simple panel codes and spreadsheets to full CFD and FEA models and on to detailed design with parametric CAD tools. Its focus is on modest cost approaches that draw heavily on the latest digital design and manufacturing methods, including a strong emphasis on utilizing off-the-shelf components, low cost analysis, automated geometry modelling and 3D printing. It deliberately avoids a deep theoretical coverage of aerodynamics or structural mechanics; rather it provides a design team with sufficient insights and guidance to get the essentials undertaken more pragmatically. The book contains many all-colour illustrations of the dozens of aircraft built by the authors and their students over the last ten years giving much detailed information on what works best. It is predominantly aimed at under-graduate and MSc level student design and build projects, but will be of interest to anyone engaged in the practical problems of getting quite complex unmanned aircraft flying. It should also appeal to the more sophisticated aero-modeller and those engaged on research based around fixed wing UAVs.




Small Unmanned Aircraft


Book Description

Autonomous unmanned air vehicles (UAVs) are critical to current and future military, civil, and commercial operations. Despite their importance, no previous textbook has accessibly introduced UAVs to students in the engineering, computer, and science disciplines--until now. Small Unmanned Aircraft provides a concise but comprehensive description of the key concepts and technologies underlying the dynamics, control, and guidance of fixed-wing unmanned aircraft, and enables all students with an introductory-level background in controls or robotics to enter this exciting and important area. The authors explore the essential underlying physics and sensors of UAV problems, including low-level autopilot for stability and higher-level autopilot functions of path planning. The textbook leads the student from rigid-body dynamics through aerodynamics, stability augmentation, and state estimation using onboard sensors, to maneuvering through obstacles. To facilitate understanding, the authors have replaced traditional homework assignments with a simulation project using the MATLAB/Simulink environment. Students begin by modeling rigid-body dynamics, then add aerodynamics and sensor models. They develop low-level autopilot code, extended Kalman filters for state estimation, path-following routines, and high-level path-planning algorithms. The final chapter of the book focuses on UAV guidance using machine vision. Designed for advanced undergraduate or graduate students in engineering or the sciences, this book offers a bridge to the aerodynamics and control of UAV flight.




Optimizing Small Multi-Rotor Unmanned Aircraft


Book Description

This design guide was written to capture the author’s practical experience of designing, building and testing multi-rotor drone systems over the past decade. The lack of one single source of useful information meant that the past 10 years has been a steep learning curve, a lot of self-tuition and many trial and error tests. Lessons learnt the hard way are not always the best way to learn. This book will be useful for the amateur drone pilot who wants to build their own system from first principles, as well as the academic researcher investigating novel design concepts and future drone applications.




Assessing the Risks of Integrating Unmanned Aircraft Systems (UAS) into the National Airspace System


Book Description

When discussing the risk of introducing drones into the National Airspace System, it is necessary to consider the increase in risk to people in manned aircraft and on the ground as well as the various ways in which this new technology may reduce risk and save lives, sometimes in ways that cannot readily be accounted for with current safety assessment processes. This report examines the various ways that risk can be defined and applied to integrating these Unmanned Aircraft Systems (UAS) into the National Airspace System managed by the Federal Aviation Administration (FAA). It also identifies needs for additional research and developmental opportunities in this field.




Unmanned Aircraft Systems


Book Description

Unmanned Aircraft Systems (UAS) have seen unprecedented levels of growth during the last decade in both military and civilian domains. It is anticipated that civilian applications will be dominant in the future, although there are still barriers to be overcome and technical challenges to be met. Integrating UAS into, for example, civilian space, navigation, autonomy, see-detect-and-avoid systems, smart designs, system integration, vision-based navigation and training, to name but a few areas, will be of prime importance in the near future. This special volume is the outcome of research presented at the International Symposium on Unmanned Aerial Vehicles, held in Orlando, Florida, USA, from June 23-25, 2008, and presents state-of-the-art findings on topics such as: UAS operations and integration into the national airspace system; UAS navigation and control; micro-, mini-, small UAVs; UAS simulation testbeds and frameworks; UAS research platforms and applications; UAS applications. This book aims at serving as a guide tool on UAS for engineers and practitioners, academics, government agencies and industry. Previously published in the Journal of Intelligent and Robotic Systems, 54 (1-3, 2009).




Unmanned Aircraft Systems


Book Description

Unmanned Aircraft Systems delivers a much needed introduction to UAV System technology, taking an integrated approach that avoids compartmentalising the subject. Arranged in four sections, parts 1-3 examine the way in which various engineering disciplines affect the design, development and deployment of UAS. The fourth section assesses the future challenges and opportunities of UAS. Technological innovation and increasingly diverse applications are two key drivers of the rapid expansion of UAS technology. The global defence budget for UAS procurement is expanding, and in the future the market for civilian UAVs is expected to outmatch that of the military. Agriculture, meteorology, conservation and border control are just a few of the diverse areas in which UAVs are making a significant impact; the author addresses all of these applications, looking at the roles and technology behind both fixed wing and rotorcraft UAVs. Leading aeronautical consultant Reg Austin co-founded the Bristol International Remotely Piloted Vehicle (RPV) conferences in 1979, which are now the longest-established UAS conferences worldwide. In addition, Austin has over 40 years' experience in the design and development of UAS. One of Austin's programmes, the "Sprite UAV System" has been deployed around the world and operated by day and night, in all weathers.




Counter-Unmanned Aircraft System (CUAS) Capability for Battalion-and-Below Operations


Book Description

The development of inexpensive small unmanned aircraft system (sUAS) technologies and the growing desire of hobbyists to have more and more capability have created a sustained sUAS industry, however these capabilities are directly enabling the ability of adversaries to threaten U.S. interests. In response to these threats, the U.S. Army and other Department of Defense (DoD) organizations have invested significantly in counter-sUAS technologies, often focusing on detecting radio frequency transmissions by sUASs and/or their operators, and jamming the radio frequency command and control links and Global Positioning System signals of individual sUASs. However, today's consumer and customized sUASs can increasingly operate without radio frequency command and control links by using automated target recognition and tracking, obstacle avoidance, and other software-enabled capabilities. The U.S. Army tasked the National Academies of Sciences, Engineering, and Medicine to conduct a study to address the above concerns. In particular, the committee was asked to assess the sUAS threat, particularly when massed and collaborating; assess current capabilities of battalion-and- below infantry units to counter sUASs; identify counter-sUAS technologies appropriate for near- term, mid-term, and far-term science and technology investment; consider human factors and logistics; and determine if the Department of Homeland Security could benefit from DoD efforts. This abbreviated report provides background information on the full report and the committee that prepared it.




Remote Pilot Test Prep - UAS


Book Description

This book is a comprehensive preparation, study and test tool for the remote pilot certificate ("Unmanned Aircraft General – Small") FAA Knowledge Exam. Topics covered are FAA regulations, the National Airspace System, weather, loading and performance, and operations. This book is particularly helpful for drone operators interested in earning a remote pilot certificate, for Remote Pilot Aircraft (RPA) applicants, unmanned aircraft system (UAS) training programs preparing applicants for FAA exams, self-study readers interested in learning more about commercial unmanned aircraft operations, and existing (manned aircraft) pilots who want to learn more about the drone and UAS operations sharing the National Airspace System.




The Droner's Manual


Book Description

The progress made in the field of unmanned aircraft within the last decade have made it possible for almost anyone to build their own UAV in their garage. For many, this is an exciting business proposition in fields from video production to agriculture. However, for beginners and even more experienced hobbyists, it can be a daunting. In this infant industry, reliable and relevant information for construction and programming of unmanned aircraft is often scattered across various sources.Similarly, the industry lacks an established set of standards for the safe and efficient operation of these small unmanned aircraft. "The Droner's Manual: A Guide to the Responsible Operation of Small Unmanned Aircraft" compiles the most important and relevant UA knowledge into a guide for both beginner and experienced operators. With his expertise as a UAV operator in government, industry, and hobby applications, author Kevin Jenkins offers step-by-step guidance to build, program, test,and fly both multicopters and fixed-wing aircraft for a variety of purposes. The purpose of this book is to compile the most important and relevant collective knowledge into a guide for both beginners and the experienced. Inside you will find step-by-step guidance to build, program, test, and fly unmanned aircraft of various types and purposes including tips from experienced operators. Also included are detailed schematics and diagrams for the construction of complex systems such as First Person View (FPV) and mapping payloads. Ultimately, you will be able to fly with confidence by following the guidance provided for mission planning, checklists, and safe flight operations contained within. Whether you use it to build your first unmanned aircraft or as a handy reference in the field, this guide is an essential for drone builders, pilots, and operators.