Smart Inorganic Polymers


Book Description

Provides complete and undiluted knowledge on making inorganic polymers functional. This comprehensive book reflects the state of the art in the field of inorganic polymers, based on research conducted by a number of internationally leading research groups working in this area. It covers the synthesis aspects of synthetic inorganic polymers and looks at multiple inorganic monomers as building blocks, which exhibit unprecedented electronic, redox, photo-emissive, magnetic, self-healing and catalytic properties. It also looks at the applications of inorganic polymers in areas such as optoelectronics, energy storage, industrial chemistry, and biology. Beginning with an overview of the use of smart inorganic polymers in daily life, Smart Inorganic Polymers: Synthesis, Properties and Emerging Applications in Materials and Life Sciences goes on to study the synthesis, properties, and applications of polymers incorporating different heteroelements such as boron, phosphorus, silicon, germanium, and tin. The book also examines inorganic polymers in flame-retardants, as functional materials, and in biology. An excellent addition to the polymer scientists' and synthetic chemists' toolbox Summarizes the state of the art on how to make and use functional inorganic polymers, from synthesis to applications Edited by the coordinator of a highly funded European community research program (COST action) that focuses specifically on the exploration of inorganic polymers Features contributions from top experts in the field Aimed at academics and industrial researchers in this field, Smart Inorganic Polymers: Synthesis, Properties and Emerging Applications in Materials and Life Sciences will also benefit scientists who want to get a better overview on the state-of-the-art of this rapidly advancing area.




Smart Inorganic Polymers


Book Description

Provides complete and undiluted knowledge on making inorganic polymers functional. This comprehensive book reflects the state of the art in the field of inorganic polymers, based on research conducted by a number of internationally leading research groups working in this area. It covers the synthesis aspects of synthetic inorganic polymers and looks at multiple inorganic monomers as building blocks, which exhibit unprecedented electronic, redox, photo-emissive, magnetic, self-healing and catalytic properties. It also looks at the applications of inorganic polymers in areas such as optoelectronics, energy storage, industrial chemistry, and biology. Beginning with an overview of the use of smart inorganic polymers in daily life, Smart Inorganic Polymers: Synthesis, Properties and Emerging Applications in Materials and Life Sciences goes on to study the synthesis, properties, and applications of polymers incorporating different heteroelements such as boron, phosphorus, silicon, germanium, and tin. The book also examines inorganic polymers in flame-retardants, as functional materials, and in biology. An excellent addition to the polymer scientists' and synthetic chemists' toolbox Summarizes the state of the art on how to make and use functional inorganic polymers, from synthesis to applications Edited by the coordinator of a highly funded European community research program (COST action) that focuses specifically on the exploration of inorganic polymers Features contributions from top experts in the field Aimed at academics and industrial researchers in this field, Smart Inorganic Polymers: Synthesis, Properties and Emerging Applications in Materials and Life Sciences will also benefit scientists who want to get a better overview on the state-of-the-art of this rapidly advancing area.




Synthetic Inorganic Chemistry


Book Description

Synthetic Inorganic Chemistry: New Perspectives presents summaries of the work of some of the most creative researchers in the field. The book highlights the most novel approaches and burgeoning applications of synthetic inorganic chemistry in development. Topics include non-precious metals in catalysis, smart inorganic polymers, new inorganic therapeutics, new photocatalysts for hydrogen production, and more. As the first volume in the Developments in Inorganic Chemistry series, this work is a valuable resource for students and researchers working in inorganic chemistry and material science. - Illustrates the scope and vitality of modern synthetic inorganic chemistry - Shows the centrality of inorganic chemistry, addressing a variety of global challenges - Serves to define the current, important and expanding roles of synthetic inorganic chemistry in interdisciplinary areas such as materials science, synthetic organic chemistry, homogeneous and heterogeneous catalysis




Smart Materials: Integrated Design, Engineering Approaches, and Potential Applications


Book Description

Polymer-based smart materials have become attractive in recent years due to the fact that polymers are flexible and provide many advantages compared to inorganic smart materials: they are low cost, they are easy to process, and they exhibit good performance at nano- and microscale levels. This volume focuses on a different class of polymers that are used as smart materials in the areas of biotechnology, medicine, and engineering. The volume aims to answer these questions: How do we distinguish ‘smart materials’? and How do they work? The chapters lay the groundwork for assimilation and exploitation of this technological advancement. Four of the key aspects of the approach that the authors have developed throughout this book are highlighted, namely the multidisciplinary exchange of knowledge, exploration of the relationships between multiple scales and their different behaviors, understanding that material properties are dictated at the smallest scale, and, therefore, the recognition that macroscale behavior can be controlled by nanoscale design.




Optically Induced Nanostructures


Book Description

Nanostructuring of materials is a task at the heart of many modern disciplines in mechanical engineering, as well as optics, electronics, and the life sciences. This book includes an introduction to the relevant nonlinear optical processes associated with very short laser pulses for the generation of structures far below the classical optical diffraction limit of about 200 nanometers as well as coverage of state-of-the-art technical and biomedical applications. These applications include silicon and glass wafer processing, production of nanowires, laser transfection and cell reprogramming, optical cleaning, surface treatments of implants, nanowires, 3D nanoprinting, STED lithography, friction modification, and integrated optics. The book highlights also the use of modern femtosecond laser microscopes and nanoscopes as novel nanoprocessing tools.




Organic Materials as Smart Nanocarriers for Drug Delivery


Book Description

Organic Materials as Smart Nanocarriers for Drug Delivery presents the latest developments in the area of organic frameworks used in pharmaceutical nanotechnology. An up-to-date overview of organic smart nanocarriers is explored, along with the different types of nanocarriers, including polymeric micelles, cyclodextrins, hydrogels, lipid nanoparticles and nanoemlusions. Written by a diverse range of international academics, this book is a valuable reference for researchers in biomaterials, the pharmaceutical industry, and those who want to learn more about the current applications of organic smart nanocarriers. - Explores the most recent molecular- and structure-based applications of organic smart nanocarriers in drug delivery - Highlights different smart nanocarriers and assesses their intricate organic structural properties for improving drug delivery - Assesses how molecular organic frameworks lead to more effective drug delivery systems




Inorganic Frameworks as Smart Nanomedicines


Book Description

Inorganic Frameworks as Smart Nanocarriers for Drug Delivery brings together recent research in the area of inorganic frameworks for drug delivery. Different types of nanocarriers are presented and discussed in detail, providing an up-to-date overview on inorganic nanoparticles with pharmaceutical applications. Written by a diverse range of international academics, this book is a valuable reference resource for researchers in biomaterials, the pharmaceutical industry, and those who want to learn more about the current applications of inorganic smart nanocarriers. - Includes assembly methods for a variety of smart nanocarrier systems, also showing how they are applied - Highlights how metal-oxide nanoparticles are effectively used in drug delivery - Assesses the pros and cons of different metallic nanomaterials as drug carriers




Smart Polymers and Their Applications


Book Description

Smart Polymers and Their Applications, Second Edition presents an up-to-date resource of information on the synthesis and properties of different types of smart polymers, including temperature, pH, electro, magnetic and photo-responsive polymers, amongst others. It is an ideal introduction to this field, as well as a review of the latest research in this area. Shape memory polymers, smart polymer hydrogels, and self-healing polymer systems are also explored. In addition, a very strong focus on applications of smart polymers is included for tissue engineering, smart polymer nanocarriers for drug delivery, and the use of smart polymers in medical devices. Additionally, the book covers the use of smart polymers for textile applications, packaging, energy storage, optical data storage, environmental protection, and more. This book is an ideal, technical resource for chemists, chemical engineers, materials scientists, mechanical engineers and other professionals in a range of industries. - Includes a significant number of new chapters on smart polymer materials development, as well as new applications development in energy storage, sensors and devices, and environmental protection - Provides a multidisciplinary approach to the development of responsive polymers, approaching the subject by the different types of polymer (e.g. temperature-responsive) and its range of applications




Polymer-Based Advanced Functional Composites for Optoelectronic and Energy Applications


Book Description

Polymer-Based Advanced Functional Composites for Optoelectronic and Energy Applications explains how polymer-based smart composites and nanocomposites can be prepared and utilized for novel optical, sensor and energy-related applications. The book begins with an introductory section on the fundamentals of smart polymer composites, including structure-property relationships and conjugated polymers. Other sections examine optical applications, including the use of polymer-based smart composites for luminescent solar concentrators, electro-chromic applications, light conversion applications, ultraviolet shielding applications, LED encapsulation applications, sensor applications, including gas-sensing, strain sensing, robotics and tactile sensors, with final sections covering energy-related applications, including energy harvesting, conversion, storage, vibrational energy harvesting, and more. This is an essential guide for researchers, scientists and advanced students in smart polymers and materials, polymer science, composites, nanocomposites, electronics and materials science. It is also a valuable book for scientists, R&D professionals and engineers working with products that could utilize smart polymer composites. - Provides thorough coverage of the latest pioneering research in the field of polymer-based smart composites - Offers an applications-oriented approach, enabling the reader to understand state-of-the-art optical, sensor and energy applications - Includes an in-depth introductory section, covering important aspects such as structure-property relationships and the role of conjugated polymers




Polymer Materials with Smart Properties


Book Description

The design of smart materials based on different natural and synthetic polymers represents one of the most attractive research areas over the last several years. Many efforts have been carried out to find new solutions for developing stimuli-responsive polymers sensitive to different triggers, which have a fast and reversible non-linear response to small changes of external stimuli or environmental conditions. In combination with other organic/inorganic/macromolecular compounds, new composite materials owning multifunctional properties can be designed. Thus, the inorganic nanoparticles incorporated into a polymer matrix provide novel functionalities to hydrogels and tuneable properties. This book reviews recent advances and developments of various classes of stimuli responsive polymer materials, different type of hydrogels for biomedical and pharmaceutical devices, scaffolds for tissue regeneration, and stimuli-responsive sensors or separation processes.