Smooth Muscle Excitation


Book Description

This book is a compendium of the latest electrophysiological research on smooth muscles from an international collection of authors. It includes recent discoveries in calcium stores and their relationship to contraction and to electrical changes in the membrane. A major section of the book concentrates on calcium release mechanisms in the cell, their control, and the consequences of calcium release in the cell for membrane events. Smooth Muscle Excitation also covers the effects of chemicals released from adjacent cells. Key Features * State-of-the-art volume that represents a synopsis of all work currently being undertaken in this area throughout the world * Content covers both basic and clinical research * Provides a range of drug development studies * Presents contributions from many internationally recognized smooth muscle physiologists




Excitation-Contraction Coupling in Skeletal, Cardiac, and Smooth Muscle


Book Description

The Third International Symposium on Excitation-Contraction Coupling in Skeletal, Cardiac, and Smooth Muscle, organized by George Frank, C. Paul Bianchi, and Henk E. DJ. ter Keurs, was held in Banff Centre, Banff, Alberta, Canada during June 26 to June 30, 1991. The theme of these symposia has been to recognize the similarities and dissimilarities of excitation-contraction coupling in skeletal, cardiac, and smooth muscle. Cross fertilization of concepts of excitation-contraction coupling in these three types of muscle has occurred since the early studies in the late fifties and early sixties on skeletal muscle. Investigators in each field meet only at specialized symposia which exclude investigators in the other fields. The purpose of the symposia has been to bring together international investigators studying excitation-contraction coupling in skeletal, cardiac, and smooth muscle so that we may learn from each other and hence provide a more global concept of excitation-contraction. The Third International Symposia has accomplished its objective as we recognize that calcium channels of the sarcolemma and the sarcoplasmic reticulum play key essential roles in excitation-contraction coupling in all three types of muscles. In skeletal muscle the recognition that E-C coupling consists of two parallel mechanisms, one dependent upon a dihydropyridine voltage-sensitive sensors coupled to calcium release from the terminal cisternae via the ryanodine sensitive channel in the foot structure of the triad.




Keynes & Aidley's Nerve and Muscle


Book Description

Editions previous to this one had R.D. Keynes and David J. Aidley as primary and secondary authors.




Excitation-Contraction Coupling and Cardiac Contractile Force


Book Description

How is the heartbeat generated? What controls the strength of contraction of heart muscle? What are the links between cardiac structure and function? How does our understanding of skeletal and smooth muscle and non-muscle cells influence our thinking about force development in the heart? Are there important species differences in how contraction is regulated in the heart? How do the new molecular data fit together in understanding the heart beat? What goes wrong in ischemia, hypertrophy, and heart failure? This book paints a modern `portrait' of how the heart works and in this picture the author shows a close-up of the structural, biochemical, and physiological links between excitation and contraction. The author takes the reader through a series of important, interrelated topics with great clarity and continuity and also includes many useful illustrations and tables. The book starts by considering the cellular structures involved in excitation-contraction coupling and then described the characteristics of the myofilaments as the end effector of excitation-contraction coupling. A general scheme of calcium regulation is described and the possible sources and sinks of calcium are discussed in simple, but quantitative terms. The cardiac action potential and its many underlying currents are reviewed. Then the characteristics of some key calcium transport systems (calcium channels, sodium/calcium exchange and SR calcium uptake and release) are discussed in detail. This is then built into a more integrated picture of calcium regulation in succeeding chapters by detailed discussions of excitation-calcium coupling mechanisms (in skeletal, cardiac, and smooth muscle), the interplay between calcium regulatory processes, and finally mechanisms of cardiac inotropy, calcium overload, and dysfunction (e.g., ischemia, hypertrophy, and heart failure). Excitation-Contraction Coupling and Cardiac Contractile Force – Second Edition is an invaluable source of information for anyone who is interested in how the heart beat is controlled and especially suited for students of the cardiovascular system at all levels from medical/graduate students through senior investigators in related fields.




Mechanisms of Vascular Disease


Book Description

New updated edition first published with Cambridge University Press. This new edition includes 29 chapters on topics as diverse as pathophysiology of atherosclerosis, vascular haemodynamics, haemostasis, thrombophilia and post-amputation pain syndromes.




Anatomy & Physiology


Book Description

A version of the OpenStax text




Colonic Motility


Book Description

Three distinct types of contractions perform colonic motility functions. Rhythmic phasic contractions (RPCs) cause slow net distal propulsion with extensive mixing/turning over. Infrequently occurring giant migrating contractions (GMCs) produce mass movements. Tonic contractions aid RPCs in their motor function. The spatiotemporal patterns of these contractions differ markedly. The amplitude and distance of propagation of a GMC are several-fold larger than those of an RPC. The enteric neurons and smooth muscle cells are the core regulators of all three types of contractions. The regulation of contractions by these mechanisms is modifiable by extrinsic factors: CNS, autonomic neurons, hormones, inflammatory mediators, and stress mediators. Only the GMCs produce descending inhibition, which accommodates the large bolus being propelled without increasing muscle tone. The strong compression of the colon wall generates afferent signals that are below nociceptive threshold in healthy subjects. However, these signals become nociceptive; if the amplitudes of GMCs increase, afferent nerves become hypersensitive, or descending inhibition is impaired. The GMCs also provide the force for rapid propulsion of feces and descending inhibition to relax the internal anal sphincter during defecation. The dysregulation of GMCs is a major factor in colonic motility disorders: irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and diverticular disease (DD). Frequent mass movements by GMCs cause diarrhea in diarrhea predominant IBS, IBD, and DD, while a decrease in the frequency of GMCs causes constipation. The GMCs generate the afferent signals for intermittent short-lived episodes of abdominal cramping in these disorders. Epigenetic dysregulation due to adverse events in early life is one of the major factors in generating the symptoms of IBS in adulthood.




Biochemistry of Smooth Muscle Contraction


Book Description

This valuable resource provides a systematic account of the biochemistry of smooth muscle contraction. As a comprehensive guide to this rapidly growing area of research, it covers the structure and characteristic properties of contractile and regulatory proteins, with special emphasis on their predicted function in the live muscle. Also included in this book are intermediate filament proteins, and desmin and vimentin, whose function in smooth muscle is unknown; and several enzymes involved in the phosphorylation-dephosphorylation of contractile and other proteins.




Fundamentals of Anaesthesia


Book Description

The second edition of Fundamentals of Anaesthesia builds upon the success of the first edition, and encapsulates the modern practice of anaesthesia in a single volume. Written and edited by a team of expert contributors, it provides a comprehensive but easily readable account of all of the information required by the FRCA Primary examination candidate and has been expanded to include more detail on all topics and to include new topics now covered in the examination. As with the previous edition, presentation of information is clear and concise, with the use of lists, tables, summary boxes and line illustrations where necessary to highlight important information and aid the understanding of complex topics. Great care has been taken to ensure an unrivalled consistency of style and presentation throughout.




Smooth Muscle Spontaneous Activity


Book Description

This book presents the commonality and heterogeneity of the mechanisms underlying smooth muscle spontaneous activity in various smooth muscle organs and in addition discusses their malfunctions in disease and their potential as novel therapeutic targets. To facilitate understanding, the volume is divided into five parts and covers 16 organs: airways, gastrointestinal tract (phasic muscle, tonic muscle), renal pelvis, ureter, urinary bladder, urethra, corporal tissue, prostate, uterus, oviducts, seminal vesicle, artery, vein, microvasculature, and lymphatic vessels. This structure will help readers to comprehend the most up-to-date information on the similarities and differences in the contractile mechanisms driving various smooth muscles as well as their potential manipulations in particular visceral organ pathologies. The vast advancements in gene, electrical recording, and imaging technologies in this field are also discussed, with review of past achievements and consideration of likely future developments. This book will be of worldwide interest to clinicians, students, and researchers alike.