Modern Processor Design


Book Description

Conceptual and precise, Modern Processor Design brings together numerous microarchitectural techniques in a clear, understandable framework that is easily accessible to both graduate and undergraduate students. Complex practices are distilled into foundational principles to reveal the authors insights and hands-on experience in the effective design of contemporary high-performance micro-processors for mobile, desktop, and server markets. Key theoretical and foundational principles are presented in a systematic way to ensure comprehension of important implementation issues. The text presents fundamental concepts and foundational techniques such as processor design, pipelined processors, memory and I/O systems, and especially superscalar organization and implementations. Two case studies and an extensive survey of actual commercial superscalar processors reveal real-world developments in processor design and performance. A thorough overview of advanced instruction flow techniques, including developments in advanced branch predictors, is incorporated. Each chapter concludes with homework problems that will institute the groundwork for emerging techniques in the field and an introduction to multiprocessor systems.




Operating Systems and Middleware


Book Description

By using this innovative text, students will obtain an understanding of how contemporary operating systems and middleware work, and why they work that way.







Operating Systems


Book Description

For a one-semester undergraduate course in operating systems for computer science, computer engineering, and electrical engineering majors. Winner of the 2009 Textbook Excellence Award from the Text and Academic Authors Association (TAA)! Operating Systems: Internals and Design Principles is a comprehensive and unified introduction to operating systems. By using several innovative tools, Stallings makes it possible to understand critical core concepts that can be fundamentally challenging. The new edition includes the implementation of web based animations to aid visual learners. At key points in the book, students are directed to view an animation and then are provided with assignments to alter the animation input and analyze the results. The concepts are then enhanced and supported by end-of-chapter case studies of UNIX, Linux and Windows Vista. These provide students with a solid understanding of the key mechanisms of modern operating systems and the types of design tradeoffs and decisions involved in OS design. Because they are embedded into the text as end of chapter material, students are able to apply them right at the point of discussion. This approach is equally useful as a basic reference and as an up-to-date survey of the state of the art.




Aix 5l Porting Guide


Book Description




Processor and System-on-Chip Simulation


Book Description

Simulation of computer architectures has made rapid progress recently. The primary application areas are hardware/software performance estimation and optimization as well as functional and timing verification. Recent, innovative technologies such as retargetable simulator generation, dynamic binary translation, or sampling simulation have enabled widespread use of processor and system-on-chip (SoC) simulation tools in the semiconductor and embedded system industries. Simultaneously, processor and SoC simulation is still a very active research area, e.g. what amounts to higher simulation speed, flexibility, and accuracy/speed trade-offs. This book presents and discusses the principle technologies and state-of-the-art in high-level hardware architecture simulation, both at the processor and the system-on-chip level.




Introduction to High Performance Scientific Computing


Book Description

This is a textbook that teaches the bridging topics between numerical analysis, parallel computing, code performance, large scale applications.







Heterogeneous Computing with OpenCL 2.0


Book Description

Heterogeneous Computing with OpenCL 2.0 teaches OpenCL and parallel programming for complex systems that may include a variety of device architectures: multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units (APUs). This fully-revised edition includes the latest enhancements in OpenCL 2.0 including: • Shared virtual memory to increase programming flexibility and reduce data transfers that consume resources • Dynamic parallelism which reduces processor load and avoids bottlenecks • Improved imaging support and integration with OpenGL Designed to work on multiple platforms, OpenCL will help you more effectively program for a heterogeneous future. Written by leaders in the parallel computing and OpenCL communities, this book explores memory spaces, optimization techniques, extensions, debugging and profiling. Multiple case studies and examples illustrate high-performance algorithms, distributing work across heterogeneous systems, embedded domain-specific languages, and will give you hands-on OpenCL experience to address a range of fundamental parallel algorithms. Updated content to cover the latest developments in OpenCL 2.0, including improvements in memory handling, parallelism, and imaging support Explanations of principles and strategies to learn parallel programming with OpenCL, from understanding the abstraction models to thoroughly testing and debugging complete applications Example code covering image analytics, web plugins, particle simulations, video editing, performance optimization, and more




Embedded System Design


Book Description

Until the late 1980s, information processing was associated with large mainframe computers and huge tape drives. During the 1990s, this trend shifted toward information processing with personal computers, or PCs. The trend toward miniaturization continues and in the future the majority of information processing systems will be small mobile computers, many of which will be embedded into larger products and interfaced to the physical environment. Hence, these kinds of systems are called embedded systems. Embedded systems together with their physical environment are called cyber-physical systems. Examples include systems such as transportation and fabrication equipment. It is expected that the total market volume of embedded systems will be significantly larger than that of traditional information processing systems such as PCs and mainframes. Embedded systems share a number of common characteristics. For example, they must be dependable, efficient, meet real-time constraints and require customized user interfaces (instead of generic keyboard and mouse interfaces). Therefore, it makes sense to consider common principles of embedded system design. Embedded System Design starts with an introduction into the area and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, like real-time operating systems. The book also discusses evaluation and validation techniques for embedded systems. Furthermore, the book presents an overview of techniques for mapping applications to execution platforms. Due to the importance of resource efficiency, the book also contains a selected set of optimization techniques for embedded systems, including special compilation techniques. The book closes with a brief survey on testing. Embedded System Design can be used as a text book for courses on embedded systems and as a source which provides pointers to relevant material in the area for PhD students and teachers. It assumes a basic knowledge of information processing hardware and software. Courseware related to this book is available at http://ls12-www.cs.tu-dortmund.de/~marwedel.