Soil Biology Primer


Book Description




Soil Conservation Service Curve Number (SCS-CN) Method Current Applications, Remaining Challenges, and Future Perspectives


Book Description

Probably, the most well-documented, and at the same time, simple conceptual method for predicting runoff depth from rainfall depth is the Soil Conservation Service curve number (SCS-CN) method. This Special Issue presents the latest developments in the SCS-CN methodology, including, but not limited to, novel applications, theoretical and conceptual studies broadening the current understanding, studies extending the method’s application in other geographical regions or other scientific fields, substantial evaluation studies, and ultimately, key advancements towards addressing the key remaining challenges, such as: improving the SCS-CN method runoff predictions without sacrificing its current level of simplicity; moving towards a unique generally accepted procedure for CN determination from rainfall-runoff data; improving the initial abstraction estimation; investigating the integration of SCS-CN method in long-term continuous hydrological models and the implementation of various soil moisture accounting systems; extending and adopting the existing CNs documentation in a broader range of regions, land uses and climatic conditions; and utilizing novel modeling, geoinformation systems, and remote sensing techniques to improve the performance and the efficiency of the method.




Soil Conservation Service Curve Number (SCS-CN) Methodology


Book Description

The Soil Conservation Service (SCS) curve number (CN) method is one of the most popular methods for computing the runoff volume from a rainstorm. It is popular because it is simple, easy to understand and apply, and stable, and accounts for most of the runoff producing watershed characteristics, such as soil type, land use, hydrologic condition, and antecedent moisture condition. The SCS-CN method was originally developed for its use on small agricultural watersheds and has since been extended and applied to rural, forest and urban watersheds. Since the inception of the method, it has been applied to a wide range of environments. In recent years, the method has received much attention in the hydrologic literature. The SCS-CN method was first published in 1956 in Section-4 of the National Engineering Handbook of Soil Conservation Service (now called the Natural Resources Conservation Service), U. S. Department of Agriculture. The publication has since been revised several times. However, the contents of the methodology have been nonetheless more or less the same. Being an agency methodology, the method has not passed through the process of a peer review and is, in general, accepted in the form it exists. Despite several limitations of the method and even questionable credibility at times, it has been in continuous use for the simple reason that it works fairly well at the field level.







Soil and Water Conservation Handbook


Book Description

Save time and effort with this practical guide to all aspects of water and soil conservation Soil and Water Conservation Handbook is a concise, compact encyclopedia of the policies, practices, conditions, and terms related to soil and/or water conservation. This handy A-to-Z guide contains descriptions of more than 700 entries, presente







Soil Conservation


Book Description

Man and soil erosion; The mechanics of erosion; The physics of rainfall; The erosivity of rainfall; The erodibility of soil; The principles of mechanical protection; The estimation of surface run-off; The design of mechanical protection works; Land management; Control of werosion by crop management; Gully erosion; Erosion control on non-arable land; Wind erosion and its control; Erosion research methods; Pollution and soil erosion; Appendix 1, 2; indexes.




National Engineering Handbook


Book Description




Soil Erosion and Conservation


Book Description

Provides comprehensive treatment of soil erosion processes and their control and a practical approach of the design of soil conservation methods.




Dirt to Soil


Book Description

"A regenerative no-till pioneer."—NBC News "We need to reintegrate livestock and crops on our farms and ranches, and Gabe Brown shows us how to do it well."—Temple Grandin, author of Animals in Translation See Gabe Brown—author and farmer—in the Netflix documentary Kiss the Ground Gabe Brown didn’t set out to change the world when he first started working alongside his father-in-law on the family farm in North Dakota. But as a series of weather-related crop disasters put Brown and his wife, Shelly, in desperate financial straits, they started making bold changes to their farm. Brown—in an effort to simply survive—began experimenting with new practices he’d learned about from reading and talking with innovative researchers and ranchers. As he and his family struggled to keep the farm viable, they found themselves on an amazing journey into a new type of farming: regenerative agriculture. Brown dropped the use of most of the herbicides, insecticides, and synthetic fertilizers that are a standard part of conventional agriculture. He switched to no-till planting, started planting diverse cover crops mixes, and changed his grazing practices. In so doing Brown transformed a degraded farm ecosystem into one full of life—starting with the soil and working his way up, one plant and one animal at a time. In Dirt to Soil Gabe Brown tells the story of that amazing journey and offers a wealth of innovative solutions to restoring the soil by laying out and explaining his "five principles of soil health," which are: Limited Disturbance Armor Diversity Living Roots Integrated Animals The Brown’s Ranch model, developed over twenty years of experimentation and refinement, focuses on regenerating resources by continuously enhancing the living biology in the soil. Using regenerative agricultural principles, Brown’s Ranch has grown several inches of new topsoil in only twenty years! The 5,000-acre ranch profitably produces a wide variety of cash crops and cover crops as well as grass-finished beef and lamb, pastured laying hens, broilers, and pastured pork, all marketed directly to consumers. The key is how we think, Brown says. In the industrial agricultural model, all thoughts are focused on killing things. But that mindset was also killing diversity, soil, and profit, Brown realized. Now he channels his creative thinking toward how he can get more life on the land—more plants, animals, and beneficial insects. “The greatest roadblock to solving a problem,” Brown says, “is the human mind.”