Solar Engineering of Thermal Processes, Photovoltaics and Wind


Book Description

The bible of solar engineering that translates solar energy theory to practice, revised and updated The updated Fifth Edition of Solar Engineering of Thermal Processes, Photovoltaics and Wind contains the fundamentals of solar energy and explains how we get energy from the sun. The authors—noted experts on the topic—provide an introduction to the technologies that harvest, store, and deliver solar energy, such as photovoltaics, solar heaters, and cells. The book also explores the applications of solar technologies and shows how they are applied in various sectors of the marketplace. The revised Fifth Edition offers guidance for using two key engineering software applications, Engineering Equation Solver (EES) and System Advisor Model (SAM). These applications aid in solving complex equations quickly and help with performing long-term or annual simulations. The new edition includes all-new examples, performance data, and photos of current solar energy applications. In addition, the chapter on concentrating solar power is updated and expanded. The practice problems in the Appendix are also updated, and instructors have access to an updated print Solutions Manual. This important book: • Covers all aspects of solar engineering from basic theory to the design of solar technology • Offers in-depth guidance and demonstrations of Engineering Equation Solver (EES) and System Advisor Model (SAM) software • Contains all-new examples, performance data, and photos of solar energy systems today • Includes updated simulation problems and a solutions manual for instructors Written for students and practicing professionals in power and energy industries as well as those in research and government labs, Solar Engineering of Thermal Processes, Fifth Edition continues to be the leading solar engineering text and reference.




Solar Engineering of Thermal Processes


Book Description

The updated fourth edition of the "bible" of solar energy theory and applications Over several editions, Solar Engineering of Thermal Processes has become a classic solar engineering text and reference. This revised Fourth Edition offers current coverage of solar energy theory, systems design, and applications in different market sectors along with an emphasis on solar system design and analysis using simulations to help readers translate theory into practice. An important resource for students of solar engineering, solar energy, and alternative energy as well as professionals working in the power and energy industry or related fields, Solar Engineering of Thermal Processes, Fourth Edition features: Increased coverage of leading-edge topics such as photovoltaics and the design of solar cells and heaters A brand-new chapter on applying CombiSys (a readymade TRNSYS simulation program available for free download) to simulate a solar heated house with solar- heated domestic hot water Additional simulation problems available through a companion website An extensive array of homework problems and exercises




Solar Engineering of Thermal Processes


Book Description

The updated, cornerstone engineering resource of solar energy theory and applications. Solar technologies already provide energy for heat, light, hot water, electricity, and cooling for homes, businesses, and industry. Because solar energy only accounts for one-tenth of a percent of primary energy demand, relatively small increases in market penetration can lead to very rapid growth rates in the industryâ??which is exactly what has been projected for coming years as the world moves away from carbon-based energy production. Solar Engineering of Thermal Processes, Third Edition provides the latest thinking and practices for engineering solar technologies and using them in various markets. This Third Edition of the acknowledged leading book on solar engineering features: Complete coverage of basic theory, systems design, and applications Updated material on such cutting-edge topics as photovoltaics and wind power systems New homework problems and exercises




Solar Energy Engineering


Book Description

As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalination, photovoltaics, solar thermal power systems, and modeling of solar systems, including the use of artificial intelligence systems in solar energy systems, modeling and performance prediction. *Written by one of the world's most renowned experts in solar energy*Covers the hottest new developments in solar technology, such as solar cooling and desalination*Packed with quick look up tables and schematic diagrams for the most commonly used systems today'




Principles of Solar Engineering, Second Edition


Book Description

This second edition of Principles of Solar Engineering covers the latest developments in a broad range of topics of interest to students and professionals interested in solar energy applications. With the scientific fundamentals included, the book covers important areas such as heating and cooling, passive solar applications, detoxification and biomass energy conversion. This comprehensive textbook provides examples of methods of solar engineering from around the world and includes examples, solutions and data applicable to international solar energy issues. A solutions manual is available to qualified instructors.




Solar Energy


Book Description

Solar Energy is an authoritative reference on the design of solar energy systems in building projects, with applications, operating principles, and simple tools for the construction, engineering, and design professional. The book simplifies the solar design and engineering process, providing sample documentation and special tools that provide all the information needed for the complete design of a solar energy system for buildings to enable mainstream MEP and design firms, and not just solar energy specialists, to meet the growing demand for solar energy systems in building projects.




Photovoltaic/Thermal (PV/T) Systems


Book Description

This book provides the most up-to-date information on hybrid solar cell and solar thermal collectors, which are commonly referred to as Photovoltaic/Thermal (PV/T) systems. PV/T systems convert solar radiation into thermal and electrical energy to produce electricity, utilize more of the solar spectrum, and save space by combining the two structures to cover lesser area than two systems separately. Research in this area is growing rapidly and is highlighted within this book. The most current methods and techniques available to aid in overall efficiency, reduce cost and improve modeling and system maintenance are all covered. In-depth chapters present the background and basic principles of the technology along with a detailed review of the most current literature. Moreover, the book details design criteria for PV/T systems including residential, commercial, and industrial applications. Provides an objective and decisive source for the supporters of green and renewable source of energy Discusses and evaluates state-of-the-art PV/T system designs Proposes and recommends potential designs for future research on this topic




Solar Energy


Book Description

This book provides a broad overview on the different aspects of solar energy, with a focus on photovoltaics, which is the technology that allows light energy to be converted into electric energy. Renewable energy sources have become increasingly popular in recent years, and solar is one of the most adaptable and attractive types – from solar farms to support the National Grid to roof panels/tiles used for solar thermal heating systems, and small solar garden lights. Written by Delft University researchers, Solar Energy uniquely covers both the physics of photovoltaic (PV) cells and the design of PV systems for real-life applications, from a concise history of solar cells components and location issues of current systems. The book is designed to make this complicated subject accessible to all, and is packed with fascinating graphs and charts, as well as useful exercises to cement the topics covered in each chapter. Solar Energy outlines the fundamental principles of semiconductor solar cells, as well as PV technology: crystalline silicon solar cells, thin-film cells, PV modules, and third-generation concepts. There is also background on PV systems, from simple stand-alone to complex systems connected to the grid. This is an invaluable reference for physics students, researchers, industrial engineers and designers working in solar energy generation, as well those with a general interest in renewable energy.




Physics of Solar Energy


Book Description

PHYSICS OF Solar Energy Science/Physics/Energy The definitive guide to the science of solar energy You hold in your hands the first, and only, truly comprehensive guide to the most abundant and most promising source of alternative energy—solar power. In recent years, all major countries in the world have been calling for an energy revolution. The renewable energy industry will drive a vigorous expansion of the global economy and create more “green” jobs. The use of fossil fuels to power our way of living is moving toward an inevitable end, with sources of coal, petroleum, and natural gas being fiercely depleted. Solar energy offers a ubiquitous, inexhaustible, clean, and highly efficient way of meeting the energy needs of the twenty-first century. This book is designed to give the reader a solid footing in the general and basic physics of solar energy, which will be the basis of research and development in new solar engineering technologies in the years to come. As solar technologies like solar cells, solar thermal power generators, solar water heaters, solar photochemistry applications, and solar space heating-cooling systems become more and more prominent, it has become essential that the next generation of energy experts—both in academia and industry—have a one-stop resource for learning the basics behind the science, applications, and technologies afforded by solar energy. This book fills that need by laying the groundwork for the projected rapid expansion of future solar projects.




Renewable Heating and Cooling


Book Description

Renewable Heating and Cooling: Technologies and Applications presents the latest information on the generation of heat for industry and domestic purposes, an area where a significant proportion of total energy is consumed. In Europe, this figure is estimated to be almost 50%, with the majority of heat generated by the consumption of fossil fuels. As there is a pressing need to increase the uptake of renewable heating and cooling (RHC) to reduce greenhouse gas emissions, this book provides a comprehensive and authoritative overview on the topic. Part One introduces key RHC technologies and discusses RHC in the context of global heating and cooling demand, featuring chapters on solar thermal process heat generation, deep geothermal energy, and solar cooling technologies. Part Two explores enabling technologies, special applications, and case studies with detailed coverage of thermal energy storage, hybrid systems, and renewable heating for RHC, along with case studies in China and Sweden. Users will find this book to be an essential resource for lead engineers and engineering consultants working on renewable heating and cooling in engineering companies, as well as academics and R&D professionals in private research institutes who have a particular interest in the subject matter. - Includes coverage on biomass, solar thermal, and geothermal renewable heating and cooling technologies - Features chapters on solar thermal process heat generation, deep geothermal energy, solar cooling technologies, and special applications - Presents case studies with detailed coverage of thermal energy storage, hybrid systems, and renewable heating for RHC - Explores enabling technologies and special applications