Solid Modeling and Applications


Book Description

This updated, second edition provides readers with an expanded treatment of the FEM as well as new information on recent trends in rapid prototyping technology. The new edition features more descriptions, exercises, and questions within each chapter. In addition, more in-depth surface theory has been introduced in section four, with particular emphasis in surface theory. Promising cutting edge technologies in the area of rapid prototyping are introduced in section seven, MATLAB-based FEM analysis has been added in section eight, and development of the plan stress and plane strain stiffness equations are introduced as a new chapter. Revised and updated based on student feedback, Solid Modeling and Applications: Rapid Prototyping, CAD and CAE Theory is ideal for university students in various engineering disciplines as well as design engineers involved in product design, analysis, and validation. It equips them with an understanding of the theory and essentials and also with practical skills needed to apply this understanding in real world design and manufacturing settings.




An Introduction to Solid Modeling


Book Description




Solid Modelling and CAD Systems


Book Description

Solid Modelling and CAD Systems gives users an insight into the methods and problems associated with CAD systems. It acts as a bridge between users who learn interfaces without understanding how they work and developers who create systems without understanding the needs of the users. The main feature of Solid Modelling and CAD Systems is a logical analysis of the techniques and basic solid modelling methods used in modern CAD systems. The book goes on to describe, among other subjects: two-dimensional shape definition methods, the command interface and graphics, databases and data exchange, early-phase design, and command files and command structures. Reading Solid Modelling and CAD Systems will help users understand the limitations of the techniques they are using and will enable practitioners to use CAD systems more efficiently. It is a valuable tool for designers, as well as for advanced undergraduate and postgraduate students. The exercises it contains allow readers to try out different aspects of the subject matter and the book also includes projects that can be used for teaching purposes.







Computational Multiscale Modeling of Fluids and Solids


Book Description

Devastatingly simple, yet hugely effective, the concept of this timely text is to provide a comprehensive overview of computational physics methods and techniques used for materials modeling on different length and time scales. Each chapter first provides an overview of the physical basic principles which are the basis for the numerical and mathematical modeling on the respective length scale. The book includes the micro scale, the meso-scale and the macro scale.




CAD, 3D Modeling, Engineering Analysis, and Prototype Experimentation


Book Description

This succinct book focuses on computer aided design (CAD), 3-D modeling, and engineering analysis and the ways they can be applied effectively in research and industrial sectors including aerospace, defense, automotive, and consumer products. These efficient tools, deployed for R&D in the laboratory and the field, perform efficiently three-dimensional modeling of finished products, render complex geometrical product designs, facilitate structural analysis and optimal product design, produce graphic and engineering drawings, and generate production documentation. Written with an eye toward green energy installations and novel manufacturing facilities, this concise volume enables scientific researchers and engineering professionals to learn design techniques, control existing and complex issues, proficiently use CAD tools, visualize technical fundamentals, and gain analytic and technical skills. This book also: · Equips practitioners and researchers to handle powerful tools for engineering design and analysis using many detailed illustrations · Emphasizes important engineering design principles in introducing readers to a range of techniques · Includes tutorials providing readers with appropriate scaffolding to accelerate their learning process · Adopts a product development, cost-consideration perspective through the book’s many examples




Image-Based Modeling


Book Description

“This book guides you in the journey of 3D modeling from the theory with elegant mathematics to applications with beautiful 3D model pictures. Written in a simple, straightforward, and concise manner, readers will learn the state of the art of 3D reconstruction and modeling.” —Professor Takeo Kanade, Carnegie Mellon University The computer vision and graphics communities use different terminologies for the same ideas. This book provides a translation, enabling graphics researchers to apply vision concepts, and vice-versa, independence of chapters allows readers to directly jump into a specific chapter of interest, compared to other texts, gives more succinct treatment overall, and focuses primarily on vision geometry. Image-Based Modeling is for graduate students, researchers, and engineers working in the areas of computer vision, computer graphics, image processing, robotics, virtual reality, and photogrammetry.




A Beginner's Guide to 3D Modeling


Book Description

A Beginner’s Guide to 3D Modeling is a project-based, straightforward introduction to computer-aided design (CAD). You’ll learn how to use Autodesk Fusion 360, the world’s most powerful free CAD software, to model gadgets, 3D print your designs, and create realistic images just like an engineering professional—with no experience required! Hands-on modeling projects and step-by-step instructions throughout the book introduce fundamental 3D modeling concepts. As you work through the projects, you’ll master the basics of parametric modeling and learn how to create your own models, from simple shapes to multipart assemblies. Once you’ve mastered the basics, you’ll learn more advanced modeling concepts like sweeps, lofts, surfaces, and rendering, before pulling it all together to create a robotic arm. You’ll learn how to: • Design a moving robotic arm, a door hinge, a teapot, and a 20-sided die • Create professional technical drawings for manufacturing and patent applications • Model springs and other complex curves to create realistic designs • Use basic Fusion 360 tools like Extrude, Revolve, and Hole • Master advanced tools like Coil and Thread Whether you’re a maker, hobbyist, or artist, A Beginner’s Guide to 3D Modeling is certain to show you how to turn your ideas into professional models. Go ahead—dust off that 3D printer and feed it your amazing designs.




Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids


Book Description

The book examines innovative numerical methods for computational solid and fluid mechanics that can be used to model complex problems in engineering. It also presents innovative and promising simulation methods, including the fundamentals of these methods, as well as advanced topics and complex applications. Further, the book explores how numerical simulations can significantly reduce the number of time-consuming and expensive experiments required, and can support engineering decisions by providing data that would be very difficult, if not impossible, to obtain experimentally. It also includes chapters covering topics such as particle methods addressing particle-based materials and numerical methods that are based on discrete element formulations; fictitious domain methods; phase field models; computational fluid dynamics based on modern finite volume schemes; hybridizable discontinuous Galerkin methods; and non-intrusive coupling methods for structural models.




Finite Element Analysis Concepts


Book Description

Young engineers are often required to utilize commercial finite element software without having had a course on finite element theory. That can lead to computer-aided design errors. This book outlines the basic theory, with a minimum of mathematics, and how its phases are structured within a typical software. The importance of estimating a solution, or verifying the results, by other means is emphasized and illustrated. The book also demonstrates the common processes for utilizing the typical graphical icon interfaces in commercial codes. in particular, the book uses and covers the widely utilized SolidWorks solid modeling and simulation system to demonstrate applications in heat transfer, stress analysis, vibrations, buckling, and other fields. The book, with its detailed applications, will appeal to upper-level undergraduates as well as engineers new to industry.