Solid-State Imaging with Charge-Coupled Devices


Book Description

Solid-State Imaging with Charge-Coupled Devices covers the complete imaging chain: from the CCD's fundamentals to the applications. The book is divided into four main parts: the first deals with the basics of the charge-coupled devices in general. The second explains the imaging concepts in close relation to the classical television application. Part three goes into detail on new developments in the solid-state imaging world (light sensitivity, noise, device architectures), and part four rounds off the discussion with a variety of applications and the imager technology. The book is a reference work intended for all who deal with one or more aspects of solid- state imaging: the educational, scientific and industrial world. Graduates, undergraduates, engineers and technicians interested in the physics of solid-state imagers will find the answers to their imaging questions. Since each chapter concludes with a short section `Worth Memorizing', reading this short summary allows readers to continue their reading without missing the main message from the previous section.




Solid State Imaging


Book Description

An Advanced Study Institute on solid-state imaging was held in Louvain-la-Neuve, Belgium on September 3-12, 1975 under the auspices of the Scientific Affairs Division of NATO. The Institute was organized by a scientific organizing committee consisting of Professor Paul Jespers and Professor Fernand Van de Wiele of the Universite' Catholique de Louvain and Dr. Marvin H. White of the Westinghouse Electric Corporation. This book represents the con tributions of the lecturers at the Institute and the chapters pre sert, for the first time, a concise treatment of a very timely subject, namely, solid-state imaging. The organization of the book parallels the program at the Institute with an introduction r. omprised of historical development and applications. This is f0~lowed by the physics of photosensors which leads quite naturally into the various solid-state photosensor arrays. The subject of signal extraction, which is often an overlooked area, follows and the last part of the book is devoted to the various system's con siderations. The subject matter of this book is suitable for a Wide range of interests from the advanced·student, through the practicing physcist and engineer, to the research worker. Although a novice may find some difficulty with the mathematical development, he can acquire a perspective into the field of solid-state imaging with this book. Likewise, portions of this book may be used as a text book since ~he chapters are instructional and self-contained.




TOF Range-Imaging Cameras


Book Description

Today the cost of solid-state two-dimensional imagers has dramatically dropped, introducing low cost systems on the market suitable for a variety of applications, including both industrial and consumer products. However, these systems can capture only a two-dimensional projection (2D), or intensity map, of the scene under observation, losing a variable of paramount importance, i.e., the arrival time of the impinging photons. Time-Of-Flight (TOF) Range-Imaging (TOF) is an emerging sensor technology able to deliver, at the same time, depth and intensity maps of the scene under observation. Featuring different sensor resolutions, RIM cameras serve a wide community with a lot of applications like monitoring, architecture, life sciences, robotics, etc. This book will bring together experts from the sensor and metrology side in order to collect the state-of-art researchers in these fields working with RIM cameras. All the aspects in the acquisition and processing chain will be addressed, from recent updates concerning the photo-detectors, to the analysis of the calibration techniques, giving also a perspective onto new applications domains.




Solid State Insurrection


Book Description

Solid state physics, the study of the physical properties of solid matter, was the most populous subfield of Cold War American physics. Despite prolific contributions to consumer and medical technology, such as the transistor and magnetic resonance imaging, it garnered less professional prestige and public attention than nuclear and particle physics. Solid State Insurrection argues that solid state physics was essential to securing the vast social, political, and financial capital Cold War physics enjoyed in the twentieth century. Solid state’s technological bent, and its challenge to the “pure science” ideal many physicists cherished, helped physics as a whole respond more readily to Cold War social, political, and economic pressures. Its research kept physics economically and technologically relevant, sustaining its cultural standing and policy influence long after the sheen of the Manhattan Project had faded. With this book, Joseph D. Martin brings a new perspective to some of the most enduring questions about the role of physics in American history.







Video Microscopy


Book Description

Ever since television became practical in the early 1950s, closed-circuit television (CCTV) in conjunction with the light microscope has provided large screen display, raised image contrast, and made the images formed by ultraviolet and infrared rays visible. With the introduction of large-scale integrated circuits in the last decade, TV equipment has improved by leaps and bounds, as has its application in microscopy. With modem CCTV, sometimes with the help of digital computers, we can distill the image from a scene that appears to be nothing but noise; capture fluorescence too dim to be seen; visualize structures far below the limit of resolution; crispen images hidden in fog; measure, count, and sort objects; and record in time-lapsed and high-speed sequences through the light microscope without great difficulty. In fact, video is becoming indispensable for harnessing the fullest capacity of the light microscope, a capacity that itself is much greater than could have been envisioned just a few years ago. The time seemed ripe then to review the basics of video, and of microscopy, and to examine how the two could best be combined to accomplish these tasks. The Marine Biological Laboratory short courses on Analytical and Quantitative Light Microscopy in Biology, Medicine, and the Materials Sciences, and the many inquiries I received on video microscopy, supported such an effort, and Kirk Jensen of Plenum Press persuaded me of its worth.







Nuclear Magnetic Resonance


Book Description

As a spectroscopic method, Nuclear Magnetic Resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: "NMR of Proteins and Acids" and "NMR of Carbohydrates, Lipids and Membranes". For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an in valuable source of current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.




Annual Reports on NMR Spectroscopy


Book Description

The protean nature of the applications of NMR is regularly reflected in Annual Reports on NMR Spectroscopy. Volume 24 is no exception, and it is an ineluctable fact that all areas of science appear to benefit upon submission to the blandishments of NMR. The examples provided here encompass solid state NMR, solid state NMR imaging, NMR studies of interfaces, NMR investigations of cells and organisms, 199 Mercury NMR, and some applications of NMR to the area of coal science.




Single-Photon Imaging


Book Description

The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist ́s view from different domains to the forthcoming “single-photon imaging” revolution. The various aspects of single-photon imaging are treated by internationally renowned, leading scientists and technologists who have all pioneered their respective fields.