Solid-State Imaging with Charge-Coupled Devices


Book Description

Solid-State Imaging with Charge-Coupled Devices covers the complete imaging chain: from the CCD's fundamentals to the applications. The book is divided into four main parts: the first deals with the basics of the charge-coupled devices in general. The second explains the imaging concepts in close relation to the classical television application. Part three goes into detail on new developments in the solid-state imaging world (light sensitivity, noise, device architectures), and part four rounds off the discussion with a variety of applications and the imager technology. The book is a reference work intended for all who deal with one or more aspects of solid- state imaging: the educational, scientific and industrial world. Graduates, undergraduates, engineers and technicians interested in the physics of solid-state imagers will find the answers to their imaging questions. Since each chapter concludes with a short section `Worth Memorizing', reading this short summary allows readers to continue their reading without missing the main message from the previous section.







Video Microscopy


Book Description

Ever since television became practical in the early 1950s, closed-circuit television (CCTV) in conjunction with the light microscope has provided large screen display, raised image contrast, and made the images formed by ultraviolet and infrared rays visible. With the introduction of large-scale integrated circuits in the last decade, TV equipment has improved by leaps and bounds, as has its application in microscopy. With modem CCTV, sometimes with the help of digital computers, we can distill the image from a scene that appears to be nothing but noise; capture fluorescence too dim to be seen; visualize structures far below the limit of resolution; crispen images hidden in fog; measure, count, and sort objects; and record in time-lapsed and high-speed sequences through the light microscope without great difficulty. In fact, video is becoming indispensable for harnessing the fullest capacity of the light microscope, a capacity that itself is much greater than could have been envisioned just a few years ago. The time seemed ripe then to review the basics of video, and of microscopy, and to examine how the two could best be combined to accomplish these tasks. The Marine Biological Laboratory short courses on Analytical and Quantitative Light Microscopy in Biology, Medicine, and the Materials Sciences, and the many inquiries I received on video microscopy, supported such an effort, and Kirk Jensen of Plenum Press persuaded me of its worth.




Solid State Imaging


Book Description

An Advanced Study Institute on solid-state imaging was held in Louvain-la-Neuve, Belgium on September 3-12, 1975 under the auspices of the Scientific Affairs Division of NATO. The Institute was organized by a scientific organizing committee consisting of Professor Paul Jespers and Professor Fernand Van de Wiele of the Universite' Catholique de Louvain and Dr. Marvin H. White of the Westinghouse Electric Corporation. This book represents the con tributions of the lecturers at the Institute and the chapters pre sert, for the first time, a concise treatment of a very timely subject, namely, solid-state imaging. The organization of the book parallels the program at the Institute with an introduction r. omprised of historical development and applications. This is f0~lowed by the physics of photosensors which leads quite naturally into the various solid-state photosensor arrays. The subject of signal extraction, which is often an overlooked area, follows and the last part of the book is devoted to the various system's con siderations. The subject matter of this book is suitable for a Wide range of interests from the advanced·student, through the practicing physcist and engineer, to the research worker. Although a novice may find some difficulty with the mathematical development, he can acquire a perspective into the field of solid-state imaging with this book. Likewise, portions of this book may be used as a text book since ~he chapters are instructional and self-contained.




Photoelectronic Imaging Devices


Book Description

The past decade has seen a major resurgence in optics research and the teaching of optics throughout the major universities both in this country and abroad. Electrooptical devices have become a challenging form of study that has penetrated both the electrical engineering and the physics departments of most major schools. There seems to be something challeng ing about a laser that appeals to both the practical electrical engineer with a hankering for fundamental research and to the fundamental physicist with a hankering to be practical. Somehow or other this same form of enthusiasm has not previously existed in the study of photoelectronic devices that form images. This field of, endeavor is becoming more and more so phisticated as newer forms of solid state devices enter the field not only in the data processing end but in the conversion of radiant energy into electrical charge patterns that are stored, manipulated, and read out in a way that a decade ago would have been considered beyond some fundamental limit or other. It is unfortunate, however, that this kind of material has heretofore been learned only by the process of becoming an apprentice in one or more of the major development laboratories concerned with the manufacture of image intensifiers or television tubes or the production of systems employing these devices.
















Reference Data for Engineers


Book Description

This standard handbook for engineers covers the fundamentals, theory and applications of radio, electronics, computers, and communications equipment. It provides information on essential, need-to-know topics without heavy emphasis on complicated mathematics. It is a "must-have" for every engineer who requires electrical, electronics, and communications data. Featured in this updated version is coverage on intellectual property and patents, probability and design, antennas, power electronics, rectifiers, power supplies, and properties of materials. Useful information on units, constants and conversion factors, active filter design, antennas, integrated circuits, surface acoustic wave design, and digital signal processing is also included. This work also offers new knowledge in the fields of satellite technology, space communication, microwave science, telecommunication, global positioning systems, frequency data, and radar.