Handbook Of Solid State Batteries (Second Edition)


Book Description

Solid-state batteries hold the promise of providing energy storage with high volumetric and gravimetric energy densities at high power densities, yet with far less safety issues relative to those associated with conventional liquid or gel-based lithium-ion batteries. Solid-state batteries are envisioned to be useful for a broad spectrum of energy storage applications, including powering automobiles and portable electronic devices, as well as stationary storage and load-leveling of renewably generated energy. This comprehensive handbook covers a wide range of topics related to solid-state batteries, including advanced enabling characterization techniques, fundamentals of solid-state systems, novel solid electrolyte systems, interfaces, cell-level studies, and three-dimensional architectures. It is directed at physicists, chemists, materials scientists, electrochemists, electrical engineers, battery technologists, and evaluators of present and future generations of power sources. This handbook serves as a reference text providing state-of-the-art reviews on solid-state battery technologies, as well as providing insights into likely future developments in the field. It is extensively annotated with comprehensive references useful to the student and practitioners in the field.




Magnesium Batteries


Book Description

The quest for efficient and durable battery technologies is one of the key challenges for enabling the transition to renewable energy economies. Magnesium batteries, and in particular rechargeable non-aqueous systems, are an area of extensive opportunity and intense research. Rechargeable magnesium batteries hold numerous advantages over current lithium-ion batteries, namely the relative abundance of magnesium to lithium and the potential for magnesium batteries to greatly outperform their Li-ion counterparts. Magnesium Batteries comprehensively outlines the scientific and technical challenges in the field, covering anodes, cathodes, electrolytes and particularly promising systems such as the Mg–S cell. Edited by a leading figure in the field of electrochemical energy storage, with contributions from global experts, this book is a vital resource for students and researchers at all levels. Whether entering into the subject for the first time or extending their knowledge of battery materials across chemistry, physics, energy, engineering and materials science this book provides an ideal reference for anyone interested in the state-of-the-art and future of magnesium batteries.




Challenges of a Rechargeable Magnesium Battery


Book Description

This expert volume addresses the practical challenges which have so far inhibited the commercial realization of a rechargeable magnesium battery, placing the discussion within the context of the already established lithium-ion battery. Lithium-ion batteries are becoming commonplace in most power applications, starting with portable electronics and expanding to motor vehicles, stationary storage, and backup power. Since their introduction 25 years ago, they have slowly been replacing all other battery chemistries. As the technology has matured, it is nearing its theoretical limits in terms of energy density, so research and development worldwide is quickly shifting towards the study of new battery chemistries with cheaper components and higher energy densities. A very popular battery candidate which has generated a lot of recent interest is the magnesium rechargeable battery. Magnesium is five orders of magnitude more abundant than lithium, can move two electrons per cation, and is known to plate smoothly without any evidence of dendritic growth. However, many challenges remain to be overcome. This essential volume presents an unfiltered view on both the realistic promises and significant obstacles for this technology, providing key insights and proposed solutions.




Handbook Of Solid State Batteries And Capacitors


Book Description

Solid state power sources have developed remarkably in the last three decades owing to improvements in technology and a greater understanding of the underlying basic sciences. In particular, a greater impetus has recently been placed in developing and commercializing small, lightweight, and highly energetic solid state power sources driven by demands from portable consumer electronics, medical technology, sensors, and electric vehicles. This comprehensive handbook features contributions by forerunners in the field of solid state power source technology from universities, research organizations, and industry. It is directed at the physicist, chemist, materials scientist, electrochemist, electrical engineer, science students, battery and capacitor technologists, and evaluators of present and future generations of power sources, as a reference text providing state-of-the-art reviews on solid state battery and capacitor technologies, and also insights into likely future developments in the field. The volume covers a comprehensive series of articles that deal with the fundamental aspects and experimental aspects of solid state power sources, an in-depth discussion on the state of the various technologies, and applications of these technologies. A description of the recent developments on solid state capacitor technology, and a comprehensive list of references in each and every article will help the reader with an encyclopedia of hidden information. The organization of the material has been carefully divided into thirty-one chapters to ensure that the handbook is thoroughly comprehensive and authoritative on the subject for the reader.




Next Generation Batteries


Book Description

In this book, the development of next-generation batteries is introduced. Included are reports of investigations to realize high energy density batteries: Li-air, Li-sulfur, and all solid-state and metal anode (Mg, Al, Zn) batteries. Sulfide and oxide solid electrolytes are also reviewed.A number of relevant aspects of all solid-state batteries with a carbon anode or Li-metal anode are discussed and described: The formation of the cathode; the interface between the cathode (anode) and electrolyte; the discharge and charge mechanisms of the Li-air battery; the electrolyte system for the Li-air battery; and cell construction. The Li-sulfur battery involves a critical problem, namely, the dissolution of intermediates of sulfur during the discharge process. Here, new electrolyte systems for the suppression of intermediate dissolution are discussed. Li-metal batteries with liquid electrolytes also present a significant problem: the dendrite formation of lithium. New separators and electrolytes are introduced to improve the safety and rechargeability of the Li-metal anode. Mg, Al, and Zn metal anodes have been also applied to rechargeable batteries, and in this book, new metal anode batteries are introduced as the generation-after-next batteries.This volume is a summary of ALCA-SPRING projects, which constitute the most extensive research for next-generation batteries in Japan. The work presented in this book is highly informative and useful not only for battery researchers but also for researchers in the fields of electric vehicles and energy storage.




Lithium Batteries


Book Description

Lithium Batteries: Science and Technology is an up-to-date and comprehensive compendium on advanced power sources and energy related topics. Each chapter is a detailed and thorough treatment of its subject. The volume includes several tutorials and contributes to an understanding of the many fields that impact the development of lithium batteries. Recent advances on various components are included and numerous examples of innovation are presented. Extensive references are given at the end of each chapter. All contributors are internationally recognized experts in their respective specialty. The fundamental knowledge necessary for designing new battery materials with desired physical and chemical properties including structural, electronic and reactivity are discussed. The molecular engineering of battery materials is treated by the most advanced theoretical and experimental methods.




Materials for Lithium-Ion Batteries


Book Description

A lithium-ion battery comprises essentially three components: two intercalation compounds as positive and negative electrodes, separated by an ionic-electronic electrolyte. Each component is discussed in sufficient detail to give the practising engineer an understanding of the subject, providing guidance on the selection of suitable materials in actual applications. Each topic covered is written by an expert, reflecting many years of experience in research and applications. Each topic is provided with an extensive list of references, allowing easy access to further information. Readership: Research students and engineers seeking an expert review. Graduate courses in electrical drives can also be designed around the book by selecting sections for discussion. The coverage and treatment make the book indispensable for the lithium battery community.




Advanced Technologies for Rechargeable Batteries


Book Description

This volume focuses on alkaline metal-ion, redox flow, and metal sulfur batteries and provides details about the various kinds of advanced rechargeable batteries. It explains magnesium-ion batteries, sodium-ion batteries, metal sulfur batteries, and redox flow batteries with an introduction to rechargeable batteries and major upcoming batteries (magnesium-/sodium-ion batteries). Various kinds of redox flow batteries from introduction extending to the recent progress in redox flow batteries have been extensively discussed. Features: Covers recent battery technologies in detail, from chemistry to advances in post-lithium-ion batteries. Reviews magnesium-ion batteries, sodium-ion batteries, metal sulfur batteries, and redox flow batteries. Explains various metal sulfur batteries. Explores different types of redox flow batteries for large-scale energy storage application. Provides authoritative coverage of scientific contents via global contributing experts. This book is aimed at graduate students, researchers, and professionals in materials science, chemical and electrical engineering, and electrochemistry.




Prospects For Li-ion Batteries And Emerging Energy Electrochemical Systems


Book Description

The Li-ion battery market is growing fast due to its ever increasing number of applications, from electric vehicles to portable devices. These devices are in demand due to safety reasons, energy efficiency, high power density and long life duration, which drive the need for more efficient electrochemical energy storage systems. The aim of this book is to provide the challenges and perspectives for Li-ion batteries (chapters 1 and 2), at the negative electrode as well as at the positive electrode, and for technologies beyond the Li-ion with the emerging Na-ion batteries and multivalent (Mg, Al, Ca, etc) systems (chapters 4 and 5). The aim is also to alert on the necessity to develop the recycling methods of the millions of produced batteries which are going to further flood our societies (chapter 3), and also to continuously increase the safety of the energy storage systems. For the latter challenge, it is interesting to seriously consider polymer electrolytes and batteries as an alternative (chapter 6).This book will take readers inside recent breakthroughs made in the electrochemical energy systems. It is a collaborative work of experts from the most known teams in the batteries field in Europe and beyond, from academics as well as from manufacturers.




Ceramic and Specialty Electrolytes for Energy Storage Devices


Book Description

Ceramic and Specialty Electrolytes for Energy Storage Devices, Volume II, investigates recent progress and challenges in a wide range of ceramic solid and quasi-solid electrolytes and specialty electrolytes for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: • Offers a detailed outlook on the performance requirements and ion transportation mechanism in solid polymer electrolytes • Covers solid-state electrolytes based on oxides (perovskite, anti-perovskite) and sulfide-type ion conductor electrolytes for lithium-ion batteries followed by solid-state electrolytes based on NASICON and garnet-type ionic conductors • Discusses electrolytes employed for high-temperature lithium-ion batteries, low-temperature lithium-ion batteries, and magnesium-ion batteries • Describes sodium-ion batteries, transparent electrolytes for energy storage devices, non-platinum-based cathode electrocatalyst for direct methanol fuel cells, non-platinum-based anode electrocatalyst for direct methanol fuel cells, and ionic liquid-based electrolytes for supercapacitor applications • Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials and chemical engineers, as well as those involved in related disciplines.