Solid State Theory


Book Description

DIVThorough, modern study of solid state physics; solid types and symmetry, electron states, electronic properties and cooperative phenomena. /div




Introduction to Solid-State Theory


Book Description

Introduction to Solid-State Theory is a textbook for graduate students of physics and materials science. It also provides the theoretical background needed by physicists doing research in pure solid-state physics and its applications to electrical engineering. The fundamentals of solid-state theory are based on a description by delocalized and localized states and - within the concept of delocalized states - by elementary excitations. The development of solid-state theory within the last ten years has shown that by a systematic introduction of these concepts, large parts of the theory can be described in a unified way. This form of description gives a "pictorial" formulation of many elementary processes in solids, which facilitates their understanding.




Solid State Physics


Book Description

Solid State Physics provides the latest information on the branch of physics that is primarily devoted to the study of matter in its solid phase, especially at the atomic level. This prestigious serial presents timely and state-of-the-art reviews pertaining to all aspects of solid state physics.




Solid-State Physics


Book Description

While the standard solid state topics are covered, the basic ones often have more detailed derivations than is customary (with an empasis on crystalline solids). Several recent topics are introduced, as are some subjects normally included only in condensed matter physics. Lattice vibrations, electrons, interactions, and spin effects (mostly in magnetism) are discussed the most comprehensively. Many problems are included whose level is from "fill in the steps" to long and challenging, and the text is equipped with references and several comments about experiments with figures and tables.




Solid State Theory


Book Description

"Solid-State Theory - An Introduction" is a textbook for graduate students of physics and material sciences. Whilst covering the traditional topics of older textbooks, it also takes up new developments in theoretical concepts and materials that are connected with such breakthroughs as the quantum-Hall effects, the high-Tc superconductors, and the low-dimensional systems realized in solids. Thus besides providing the fundamental concepts to describe the physics of the electrons and ions comprising the solid, including their interactions, the book casts a bridge to the experimental facts and gives the reader an excellent insight into current research fields. A compilation of problems makes the book especially valuable to both students and teachers.




Introduction to Solid-State Theory


Book Description

Introduction to Solid-State Theory is a textbook for graduate students of physics and materials science. It also provides the theoretical background needed by physicists doing research in pure solid-state physics and its applications to electrical engineering. The fundamentals of solid-state theory are based on a description by delocalized and localized states and - within the concept of delocalized states - by elementary excitations. The development of solid-state theory within the last ten years has shown that by a systematic introduction of these concepts, large parts of the theory can be described in a unified way. This form of description gives a "pictorial" formulation of many elementary processes in solids, which facilitates their understanding.




Solid State Theory, Volume 2


Book Description

The present volume 2 covers advanced topics in theoretical solid state physics and thus ties in directly with the fundamentals. Solids in external fields or more generally in non-equilibrium and deviations from the ideal 3-dimensional crystal structure (surfaces, impurities, low-dimensional structures, quantum dots, etc.) are treated. The consideration of collective phenomena such as superconductivity and magnetism complete the presentation. The reader is assumed to have the contents of Volume 1 (electrons and phonons in ideal crystals, Bloch theorem, population number representation or 2nd quantization, electron-electron and electron-phonon interaction) as well as the basic knowledge of general theoretical physics (mechanics, electrodynamics, quantum mechanics, and statistical physics) usually available after a bachelor's degree in physics. Volume 2 is thus ideally suited for students in the master's program in physics who wish to specialize in (experimental or theoretical) solid-state physics. Addressing current topics (e.g., Kondo effect, fractional quantum Hall effect, 2-dimensional crystals such as graphene, giant magnetoresistance effect, and others) provides an optimal transition to modern research.The new edition has been completely revised, expanded with numerous exercises and existing redesigned, with the associated solutions now included in the book.




Principles of the Theory of Solids


Book Description

Professor Ziman's classic textbook on the theory of solids was first pulished in 1964. This paperback edition is a reprint of the second edition, which was substantially revised and enlarged in 1972. The value and popularity of this textbook is well attested by reviewers' opinions and by the existence of several foreign language editions, including German, Italian, Spanish, Japanese, Polish and Russian. The book gives a clear exposition of the elements of the physics of perfect crystalline solids. In discussing the principles, the author aims to give students an appreciation of the conditions which are necessary for the appearance of the various phenomena. A self-contained mathematical account is given of the simplest model that will demonstrate each principle. A grounding in quantum mechanics and knowledge of elementary facts about solids is assumed. This is therefore a textbook for advanced undergraduates and is also appropriate for graduate courses.




Solid State Physics


Book Description

Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully designed to apply the fundamental principles illustrated in the text to currently active topics of research. Basic concepts and recent advances in the field are explained in tutorial style and organized in an intuitive manner. The book is a basic reference work for students, researchers, and lecturers in any area of solid-state physics. - Features additional material on nanostructures, giving students and lecturers the most significant features of low-dimensional systems, with focus on carbon allotropes - Offers detailed explanation of dissipative and nondissipative transport, and explains the essential aspects in a field, which is commonly overlooked in textbooks - Additional material in the classical and quantum Hall effect offers further aspects on magnetotransport, with particular emphasis on the current profiles - Gives a broad overview of the band structure of solids, as well as presenting the foundations of the electronic band structure. Also features reported with new and revised material, which leads to the latest research




Solid State Properties


Book Description

This book fills a gap between many of the basic solid state physics and materials sciencebooks that are currently available. It is written for a mixed audience of electricalengineering and applied physics students who have some knowledge of elementaryundergraduate quantum mechanics and statistical mechanics. This book, based on asuccessful course taught at MIT, is divided pedagogically into three parts: (I) ElectronicStructure, (II) Transport Properties, and (III) Optical Properties. Each topic is explainedin the context of bulk materials and then extended to low-dimensional materials whereapplicable. Problem sets review the content of each chapter to help students to understandthe material described in each of the chapters more deeply and to prepare them to masterthe next chapters.