Self-Dual Chern-Simons Theories


Book Description

Self-duality greatly reduces the mathematical difficulties of a theory but it is also a notion of considerable physical significance. The new class of self-dual Chern-Simons theories discussed in detail in this book arise in the context of anyonic quantum field theory and have applications to models such as the quantum Hall effect, anyonic superconductivity, and Aharonov-Bohm scattering. There are also interesting connections with the theory of integrable models. The author presents the abelian and non-abelian models for relativistic and non-relativistic realizations of the self-dual Chern-Simons theories and finishes with some applications in quantum physics. The book is written for advanced students and researchers in mathematical, particle, and condensed matter physics.




Solitons in Field Theory and Nonlinear Analysis


Book Description

There are two approaches in the study of differential equations of field theory. The first, finding closed-form solutions, works only for a narrow category of problems. Written by a well-known active researcher, this book focuses on the second, which is to investigate solutions using tools from modern nonlinear analysis.




Selfdual Gauge Field Vortices


Book Description

This monograph discusses specific examples of selfdual gauge field structures, including the Chern–Simons model, the abelian–Higgs model, and Yang–Mills gauge field theory. The author builds a foundation for gauge theory and selfdual vortices by introducing the basic mathematical language of gauge theory and formulating examples of Chern–Simons–Higgs theories (in both abelian and non-abelian settings). Thereafter, the Electroweak theory and self-gravitating Electroweak strings are examined. The final chapters treat elliptic problems involving Chern–Simmons models, concentration-compactness principles, and Maxwell–Chern–Simons vortices.







Geometric Analysis and PDEs


Book Description

This volume contains lecture notes on key topics in geometric analysis, a growing mathematical subject which uses analytical techniques, mostly of partial differential equations, to treat problems in differential geometry and mathematical physics.










Physics Briefs


Book Description