Mapping Exile and Return


Book Description

One of the most persistent, if vexing, issues facing not just theology but also political theory, sociology, and other disciplines, is the ongoing Palestinian-Israeli conflict. For theology, the problem is especially nettlesome on account of the church s shared history and tradition with Israel. Palestinians, including Palestinian Christians, bear the brunt of suffering and dispossession in the current situation, yet are burdened even more by Christian political appropriation of Zionism. Through an analysis of Palestinian refugee mapping practices for returning to their homeland, Alain Epp Weaver takes up the troubled issue of Palestinian dispossession and argues against the political theology embedded in Zionist cartographic practices that refuse and seek to eliminate evidence of co-existence. Instead, Alain Epp Weaver offers a political theology of redrawing the territory compatible with a bi-national vision for a shared Palestinian-Israeli future.




General Register


Book Description

Announcements for the following year included in some vols.







Theoretical and Computational Aspects of Magnetic Organic Molecules


Book Description

Organic materials with extraordinary magnetic properties promise a wide range of light, flexible, and inexpensive alternatives to familiar metal-based magnets. Individual organic molecules with high magnetic moments will be the foundation for design and fabrication of these materials. This book provides a systematic understanding of the structure and properties of organic magnetic molecules. After a summary of the phenomenon of magnetism at the molecular level, it presents a survey of the challenges to theoretical description and evaluation of the magnetic character of open-shell molecules, and an overview of recently developed methods and their successes and shortfalls. Several fields of application, including very strong organic molecular magnets and photo-magnetic switches, are surveyed. Finally, discussions on metal-based materials and simultaneously semiconducting and ferromagnetic extended systems and solids point the way toward future advances. The reader will find a comprehensive discourse on current understanding of magnetic molecules, a thorough survey of computational methods of characterizing known and imagined molecules, simple rules for design of larger magnetic systems, and a guide to opportunities for progress toward organic magnets.




Electromagnetic Geophysical Fields


Book Description

This book develops the theory of electromagnetic (EM) precursors to seaquakes (i.e. underwater earthquakes) and tsunamis, including the sequential stages of the transformation of a weak seismic mechanical excitation of the sea bottom into EM signals in the atmosphere. It further examines the relationship between geophysics and biophysics, using appropriate mathematical support, and a new model of the magnetic location of the epicenter of a possible land earthquake is described, as well as a block-scheme of the multidisciplinary multilevel seaquake monitoring complex. Also discussed are measured changes of brain bioelectric activity and heart functioning under the influence of moderate geomagnetic storms. Written for researchers and specialists (e.g. upper level undergraduates, postgraduates, scientists) in mathematical, computational, geophysical, biophysical, geodynamical, seismological and prognostic disciplines, this book provides multidisciplinary data and analytical tools supporting the theory and practice of seismic prognosis, promoting further understanding of novel marine and land monitoring systems.







Catalogue of the University of Michigan


Book Description

Announcements for the following year included in some vols.




Announcement


Book Description




PETSc for Partial Differential Equations: Numerical Solutions in C and Python


Book Description

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.




Geochemistry of Colloid Systems


Book Description

Colloid science has been applied by soil chemists and clay mineral ogists for many years, and some of the most important studies on the behavior of colloids have been contributed by them. Barring a few notable exceptions, only in the last decade have geochemists applied colloid science in their research and in this period much work has been published. It seemed to the authors that it would be useful at this stage to attempt to summarize the progress made and to try to examine what colloid science has contributed and can further contribute to geo chemistry. This book is based partly on a course of the same title given to graduate students by one of the authors (S. Y) between 1972 and 1977 at the Department of Geology at the Hebrew University of Jerusalem. Consequently many fundamental concepts of the subject are included that will be of use to graduate students in geology, geo chemistry, soil science, and oceanography. So that specialists interested in certain sections may find their subjects comprehensively covered, a few topics are dealt with in more than one chapter so that readers may ignore sections not especially of interest to them. However the chapters more fully treating certain topics are cross-referenced. In such cases the subjects are treated from different viewpoints and the citations used represent these dif fering viewpoints.