Differential Information Economies


Book Description

One of the main problems in current economic theory is to write contracts which are Pareto optimal, incentive compatible, and also implementable as a perfect Bayesian equilibrium of a dynamic, noncooperative game. The question arises whether it is possible to provide Walrasian type or cooperative equilibrium concepts which have these properties. This volume contains original contributions on noncooperative and cooperative equilibrium notions in economies with differential information and provides answers to the above questions. Moreover, issues of stability, learning and continuity of alternative equilibria are also examined.




Cooperative Game Theory and Applications


Book Description

In this book applications of cooperative game theory that arise from combinatorial optimization problems are described. It is well known that the mathematical modeling of various real-world decision-making situations gives rise to combinatorial optimization problems. For situations where more than one decision-maker is involved classical combinatorial optimization theory does not suffice and it is here that cooperative game theory can make an important contribution. If a group of decision-makers decide to undertake a project together in order to increase the total revenue or decrease the total costs, they face two problems. The first one is how to execute the project in an optimal way so as to increase revenue. The second one is how to divide the revenue attained among the participants. It is with this second problem that cooperative game theory can help. The solution concepts from cooperative game theory can be applied to arrive at revenue allocation schemes. In this book the type of problems described above are examined. Although the choice of topics is application-driven, it also discusses theoretical questions that arise from the situations that are studied. For all the games described attention will be paid to the appropriateness of several game-theoretic solution concepts in the particular contexts that are considered. The computation complexity of the game-theoretic solution concepts in the situation at hand will also be considered.




Cooperative Games, Solutions and Applications


Book Description

The study of the theory of games was started in Von Neumann (1928), but the development of the theory of games was accelerated after the publication of the classical book "Theory of games and economic behavior" by Von Neumann and Morgenstern (1944). As an initial step, the theory of games aims to put situations of conflict and cooperation into mathematical models. In the second and final step, the resulting models are analysed on the basis of equitable and mathematical reasonings. The conflict and/or cooperative situation in question is generally due to the interaction between two or more individuals (players). Their interaction may lead up to several potential payoffs over which each player has his own preferences. Any player attempts to achieve his largest possible payoff, but the other players may also exert their influence on the realization of some potential payoff. As already mentioned, the theory of games consists of two parts, a modelling part and a solution part. Concerning the modelling part, the mathematical models of conflict and cooperative situations are described. The description of the models includes the rules, the strategy space of any player, potential payoffs to the players, the preferences of each player over the set of all potential payoffs, etc. According to the rules, it is either permitted or forbidden that the players communicate with one another in order to make binding agreements regarding their mutual actions.




Models in Cooperative Game Theory


Book Description

Cooperative game theory is a booming research area with many new developments in the last few years. So, our main purpose when prep- ing the second edition was to incorporate as much of these new dev- opments as possible without changing the structure of the book. First, this o?ered us the opportunity to enhance and expand the treatment of traditional cooperative games, called here crisp games, and, especially, that of multi-choice games, in the idea to make the three parts of the monograph more balanced. Second, we have used the opportunity of a secondeditiontoupdateandenlargethelistofreferencesregardingthe threemodels of cooperative games. Finally, we have bene?ted fromthis opportunity by removing typos and a few less important results from the ?rst edition of the book, and by slightly polishing the English style and the punctuation, for the sake of consistency along the monograph. The main changes are: (1) Chapter 3 contains an additional section, Section 3. 3, on the - erage lexicographic value, which is a recent one-point solution concept de?ned on the class of balanced crisp games. (2) Chapter 4 is new. It o?ers a brief overview on solution c- cepts for crisp games from the point of view of egalitarian criteria, and presents in Section 4. 2 a recent set-valued solution concept based on egalitarian considerations, namely the equal split-o? set. (3)Chapter5isbasicallyanenlargedversionofChapter4ofthe?rst edition because Section 5. 4 dealing with the relation between convex games and clan games with crisp coalitions is new.




Computational Aspects of Cooperative Game Theory


Book Description

Cooperative game theory is a branch of (micro-)economics that studies the behavior of self-interested agents in strategic settings where binding agreements among agents are possible. Our aim in this book is to present a survey of work on the computational aspects of cooperative game theory. We begin by formally defining transferable utility games in characteristic function form, and introducing key solution concepts such as the core and the Shapley value. We then discuss two major issues that arise when considering such games from a computational perspective: identifying compact representations for games, and the closely related problem of efficiently computing solution concepts for games. We survey several formalisms for cooperative games that have been proposed in the literature, including, for example, cooperative games defined on networks, as well as general compact representation schemes such as MC-nets and skill games. As a detailed case study, we consider weighted voting games: a widely-used and practically important class of cooperative games that inherently have a natural compact representation. We investigate the complexity of solution concepts for such games, and generalizations of them. We briefly discuss games with non-transferable utility and partition function games. We then overview algorithms for identifying welfare-maximizing coalition structures and methods used by rational agents to form coalitions (even under uncertainty), including bargaining algorithms. We conclude by considering some developing topics, applications, and future research directions.




N-Person Game Theory


Book Description

DIVSequel to Two-Person Game Theory introduces necessary mathematical notation (mainly set theory), presents basic concepts and models, and provides applications to social situations. /div




Game Theory


Book Description

This is an extract from the 4-volume dictionary of economics, a reference book which aims to define the subject of economics today. 1300 subject entries in the complete work cover the broad themes of economic theory. It concentrates on the topic of game theory.




The Essential John Nash


Book Description

When John Nash won the Nobel prize in economics in 1994, many people were surprised to learn that he was alive and well. Since then, Sylvia Nasar's celebrated biography A Beautiful Mind, the basis of a new major motion picture, has revealed the man. The Essential John Nash reveals his work--in his own words. This book presents, for the first time, the full range of Nash's diverse contributions not only to game theory, for which he received the Nobel, but to pure mathematics--from Riemannian geometry and partial differential equations--in which he commands even greater acclaim among academics. Included are nine of Nash's most influential papers, most of them written over the decade beginning in 1949. From 1959 until his astonishing remission three decades later, the man behind the concepts "Nash equilibrium" and "Nash bargaining"--concepts that today pervade not only economics but nuclear strategy and contract talks in major league sports--had lived in the shadow of a condition diagnosed as paranoid schizophrenia. In the introduction to this book, Nasar recounts how Nash had, by the age of thirty, gone from being a wunderkind at Princeton and a rising mathematical star at MIT to the depths of mental illness. In his preface, Harold Kuhn offers personal insights on his longtime friend and colleague; and in introductions to several of Nash's papers, he provides scholarly context. In an afterword, Nash describes his current work, and he discusses an error in one of his papers. A photo essay chronicles Nash's career from his student days in Princeton to the present. Also included are Nash's Nobel citation and autobiography. The Essential John Nash makes it plain why one of Nash's colleagues termed his style of intellectual inquiry as "like lightning striking." All those inspired by Nash's dazzling ideas will welcome this unprecedented opportunity to trace these ideas back to the exceptional mind they came from.




Classics in Game Theory


Book Description

Classics in Game Theory assembles in one sourcebook the basic contributions to the field that followed on the publication of Theory of Games and Economic Behavior by John von Neumann and Oskar Morgenstern (Princeton, 1944). The theory of games, first given a rigorous formulation by von Neumann in a in 1928, is a subfield of mathematics and economics that models situations in which individuals compete and cooperate with each other. In the "heroic era" of research that began in the late 1940s, the foundations of the current theory were laid; it is these fundamental contributions that are collected in this volume. In the last fifteen years, game theory has become the dominant model in economic theory and has made significant contributions to political science, biology, and international security studies. The central role of game theory in economic theory was recognized by the award of the Nobel Memorial Prize in Economic Science in 1994 to the pioneering game theorists John C. Harsanyi, John Nash, and Reinhard Selten. The fundamental works for which they were honored are all included in this volume. Harold Kuhn, himself a major contributor to game theory for his reformulation of extensive games, has chosen eighteen essays that constitute the core of game theory as it exists today. Drawn from a variety of sources, they will be an invaluable tool for researchers in game theory and for a broad group of students of economics, political science, and biology.




Cooperative Game Theory and Its Application to Natural, Environmental and Water Resource Issues:


Book Description

This paper provides a review of various applications of cooperative game theory (CGT) to issues of natural and environmental resources. With an increase in the level of competition over environmental and natural resources, the incidents of disputes have been at the center of allocation agreements. The paper reviews the cases of common pool resources such as fisheries and forests, and cases of environmental pollution such as acid rain, flow, and stock pollution. In addition to providing examples of cooperative solutions to allocation problems, the conclusion from this review suggests that cooperation over scarce environmental and natural resources is possible under a variety of physical conditions and institutional arrangements. CGT applications to international fishery disputes are especially useful in that they have been making headway in policy-related agreements among states and regions of the world. Forest applications are more local in nature, but of great relevance in solving disputes among communities and various levels of governments.