Astronomy: A Physical Perspective


Book Description

This fully revised and updated text is a comprehensive introduction to astronomical objects and phenomena. By applying some basic physical principles to a variety of situations, students will learn how to relate everyday physics to the astronomical world. Starting with the simplest objects, the text contains explanations of how and why astronomical phenomena occur, and how astronomers collect and interpret information about stars, galaxies and the solar system. The text looks at the properties of stars, star formation and evolution; neutron stars and black holes; the nature of galaxies; and the structure of the universe. It examines the past, present and future states of the universe; and final chapters use the concepts that have been developed to study the solar system, its formation; the possibility of finding other planetary systems; and the search for extraterrestrial life. This comprehensive text contains useful equations, chapter summaries, worked examples and end-of-chapter problem sets.




Astronomy: A Physical Perspective


Book Description

This fully revised and updated text is a comprehensive introduction to astronomical objects and phenomena. By applying some basic physical principles to a variety of situations, students will learn how to relate everyday physics to the astronomical world. Starting with the simplest objects, the text contains explanations of how and why astronomical phenomena occur, and how astronomers collect and interpret information about stars, galaxies and the solar system. The text looks at the properties of stars, star formation and evolution; neutron stars and black holes; the nature of galaxies; and the structure of the universe. It examines the past, present and future states of the universe; and final chapters use the concepts that have been developed to study the solar system, its formation; the possibility of finding other planetary systems; and the search for extraterrestrial life. This comprehensive text contains useful equations, chapter summaries, worked examples and end-of-chapter problem sets.




Student Solution Manual for Foundation Mathematics for the Physical Sciences


Book Description

This Student Solution Manual provides complete solutions to all the odd-numbered problems in Foundation Mathematics for the Physical Sciences. It takes students through each problem step-by-step, so they can clearly see how the solution is reached, and understand any mistakes in their own working. Students will learn by example how to arrive at the correct answer and improve their problem-solving skills.




Astronomy Methods


Book Description

Astronomy Methods is an introduction to the basic practical tools, methods and phenomena that underlie quantitative astronomy. Taking a technical approach, the author covers a rich diversity of topics across all branches of astronomy, from radio to gamma-ray wavelengths. Topics include the quantitative aspects of the electromagnetic spectrum, atmospheric and interstellar absorption, telescopes in all wavebands, interferometry, adaptive optics, the transport of radiation through matter to form spectral lines, and neutrino and gravitational-wave astronomy. Clear, systematic presentations of the topics are accompanied by diagrams and problem sets. Written for undergraduates and graduate students, this book contains a wealth of information that is required for the practice and study of quantitative and analytical astronomy and astrophysics.




An Introduction to Modern Astrophysics


Book Description

An Introduction to Modern Astrophysics is a comprehensive, well-organized and engaging text covering every major area of modern astrophysics, from the solar system and stellar astronomy to galactic and extragalactic astrophysics, and cosmology. Designed to provide students with a working knowledge of modern astrophysics, this textbook is suitable for astronomy and physics majors who have had a first-year introductory physics course with calculus. Featuring a brief summary of the main scientific discoveries that have led to our current understanding of the universe; worked examples to facilitate the understanding of the concepts presented in the book; end-of-chapter problems to practice the skills acquired; and computational exercises to numerically model astronomical systems, the second edition of An Introduction to Modern Astrophysics is the go-to textbook for learning the core astrophysics curriculum as well as the many advances in the field.




Measuring the Universe


Book Description

Astronomy is an observational science, renewed and even revolutionized by new developments in instrumentation. With the resulting growth of multiwavelength investigation as an engine of discovery, it is increasingly important for astronomers to understand the underlying physical principles and operational characteristics for a broad range of instruments. This comprehensive text is ideal for graduate students, active researchers and instrument developers. It is a thorough review of how astronomers obtain their data, covering current approaches to astronomical measurements from radio to gamma rays. The focus is on current technology rather than the history of the field, allowing each topic to be discussed in depth. Areas covered include telescopes, detectors, photometry, spectroscopy, adaptive optics and high-contrast imaging, millimeter-wave and radio receivers, radio and optical/infrared interferometry, and X-ray and gamma-ray astronomy, all at a level that bridges the gap between the basic principles of optics and the subject's abundant specialist literature. Color versions of figures and solutions to selected problems are available online at www.cambridge.org/9780521762298.







Physical Chemistry for the Biosciences


Book Description

This book is ideal for use in a one-semester introductory course in physical chemistry for students of life sciences. The author's aim is to emphasize the understanding of physical concepts rather than focus on precise mathematical development or on actual experimental details. Subsequently, only basic skills of differential and integral calculus are required for understanding the equations. The end-of-chapter problems have both physiochemical and biological applications.




Student Solution Manual for Essential Mathematical Methods for the Physical Sciences


Book Description

This Student Solution Manual provides complete solutions to all the odd-numbered problems in Essential Mathematical Methods for the Physical Sciences. It takes students through each problem step-by-step, so they can clearly see how the solution is reached, and understand any mistakes in their own working. Students will learn by example how to select an appropriate method, improving their problem-solving skills.