Solving fully neutrosophic linear programming problem with application to stock portfolio selection


Book Description

Neutrosophic set is considered as a generalized of crisp set, fuzzy set, and intuitionistic fuzzy set for representing the uncertainty, inconsistency, and incomplete knowledge about the real world problems. In this paper, a neutrosophic linear programming (NLP) problem with single-valued trapezoidal neutrosophic numbers is formulated and solved. A new method based on the so-called score function to find the neutrosophic optimal solution of fully neutrosophic linear programming (FNLP) problem is proposed.




Solving fully neutrosophic linear programming problem with application to stock portfolio selection


Book Description

Neutrosophic set is considered as a generalized of crisp set, fuzzy set, and intuitionistic fuzzy set for representing the uncertainty, inconsistency, and incomplete knowledge about the real world problems. In this paper, a neutrosophic linear programming (NLP) problem with single-valued trapezoidal neutrosophic numbers is formulated and solved. A new method based on the so-called score function to find the neutrosophic optimal solution of fully neutrosophic linear programming (FNLP) problem is proposed.




Neutrosophic Sets and Systems, Vol. 46, 2021


Book Description

Papers on neutrosophic programming, neutrosophic hypersoft set, neutrosophic topological spaces, NeutroAlgebra, NeutroGeometry, AntiGeometry, NeutroNearRings, neutrosophic differential equations, etc.




Neutrosophic Sets and Systems, vol. 51/2022


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).




Optimization of Financial Asset Neutrosophic Portfolios


Book Description

The purpose of this paper was to model, with the help of neutrosophic fuzzy numbers, the optimal financial asset portfolios, offering additional information to those investing in the capital market. The optimal neutrosophic portfolios are those categories of portfolios consisting of two or more financial assets, modeled using neutrosophic triangular numbers, that allow for the determination of financial performance indicators, respectively the neutrosophic average, the neutrosophic risk, for each financial asset, and the neutrosophic covariance as well as the determination of the portfolio return, respectively of the portfolio risk.




Fuzzy Cognitive Maps and Neutrosophic Cognitive Maps


Book Description

In a world of chaotic alignments, traditional logic with its strict boundaries of truth and falsity has not imbued itself with the capability of reflecting the reality. Despite various attempts to reorient logic, there has remained an essential need for an alternative system that could infuse into itself a representation of the real world. Out of this need arose the system of Neutrosophy (the philosophy of neutralities, introduced by FLORENTIN SMARANDACHE), and its connected logic Neutrosophic Logic, which is a further generalization of the theory of Fuzzy Logic. In this book we study the concepts of Fuzzy Cognitive Maps (FCMs) and their Neutrosophic analogue, the Neutrosophic Cognitive Maps (NCMs). Fuzzy Cognitive Maps are fuzzy structures that strongly resemble neural networks, and they have powerful and far-reaching consequences as a mathematical tool for modeling complex systems. Neutrosophic Cognitive Maps are generalizations of FCMs, and their unique feature is the ability to handle indeterminacy in relations between two concepts thereby bringing greater sensitivity into the results. Some of the varied applications of FCMs and NCMs which has been explained by us, in this book, include: modeling of supervisory systems; design of hybrid models for complex systems; mobile robots and in intimate technology such as office plants; analysis of business performance assessment; formalism debate and legal rules; creating metabolic and regulatory network models; traffic and transportation problems; medical diagnostics; simulation of strategic planning process in intelligent systems; specific language impairment; web-mining inference application; child labor problem; industrial relations: between employer and employee, maximizing production and profit; decision support in intelligent intrusion detection system; hyper-knowledge representation in strategy formation; female infanticide; depression in terminally ill patients and finally, in the theory of community mobilization and women empowerment relative to the AIDS epidemic.




Robust Optimization


Book Description

Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.










Pythagorean Fuzzy Sets


Book Description

This book presents a collection of recent research on topics related to Pythagorean fuzzy set, dealing with dynamic and complex decision-making problems. It discusses a wide range of theoretical and practical information to the latest research on Pythagorean fuzzy sets, allowing readers to gain an extensive understanding of both fundamentals and applications. It aims at solving various decision-making problems such as medical diagnosis, pattern recognition, construction problems, technology selection, and more, under the Pythagorean fuzzy environment, making it of much value to students, researchers, and professionals associated with the field.