Solving intuitionistic fuzzy multiobjective linear programming problem under neutrosophic environment


Book Description

The existence of neutral /indeterminacy degrees reflects the more practical aspects of decision-making scenarios. Thus, this paper has studied the intuitionistic fuzzy multiobjective linear programming problems (IFMOLPPs) under neutrosophic uncertainty. To highlight the degrees of neutrality in IFMOLPPs, we have investigated the neutrosophic optimization techniques with intuitionistic fuzzy parameters.




Neutrosophic Sets and Systems: An International Book Series in Information Science and Engineering, vol. 21 / 2018


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.




Neutrosophic Goal Geometric Programming Problem based on Geometric Mean Method and its Application


Book Description

This paper describes neutrosophic goal geometric programming method, a new concept to solve multi-objective non-linear optimization problem under uncertainty. The proposed method is described here as an extension of fuzzy and intuitionistic fuzzy goal geometric programming technique in which the degree of acceptance , degree of indeterminacy and degree of rejection is simultaneously considered.




Neutrosophic Operational Research


Book Description

This book addresses new concepts, methods, algorithms, modeling, and applications of green supply chain, inventory control problems, assignment problems, transportation problem, linear problems and new information related to optimization for the topic from the theoretical and applied viewpoints of neutrosophic sets and logic. The book is an innovatory of new tools and procedures, such as: Neutrosophic Statistical Tests and Dependent State Samplings, Neutrosophic Probabilistic Expert Systems, Neutrosophic HyperSoft Set, Quadripartitioned Neutrosophic Cross-Entropy, Octagonal and Spherical and Cubic Neutrosophic Numbers used in machine learning. It highlights the process of neutrosofication {which means to split the universe into three parts, two opposite ones (Truth and Falsehood), and an Indeterminate or neutral one (I) in between them}. It explains Three-Ways Decision, how the universe set is split into three different distinct areas, in regard to the decision process, representing: Acceptance, Noncommitment, and Rejection, respectively. The Three-Way Decision is used in the Neutrosophic Linguistic Rough Set, which has never been done before.




Neutrosophic Sets and Systems: An International Book Series in Information Science and Engineering, vol. 19 / 2018


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.




Collected Papers. Volume VIII


Book Description

This eighth volume of Collected Papers includes 75 papers comprising 973 pages on (theoretic and applied) neutrosophics, written between 2010-2022 by the author alone or in collaboration with the following 102 co-authors (alphabetically ordered) from 24 countries: Mohamed Abdel-Basset, Abduallah Gamal, Firoz Ahmad, Ahmad Yusuf Adhami, Ahmed B. Al-Nafee, Ali Hassan, Mumtaz Ali, Akbar Rezaei, Assia Bakali, Ayoub Bahnasse, Azeddine Elhassouny, Durga Banerjee, Romualdas Bausys, Mircea Boșcoianu, Traian Alexandru Buda, Bui Cong Cuong, Emilia Calefariu, Ahmet Çevik, Chang Su Kim, Victor Christianto, Dae Wan Kim, Daud Ahmad, Arindam Dey, Partha Pratim Dey, Mamouni Dhar, H. A. Elagamy, Ahmed K. Essa, Sudipta Gayen, Bibhas C. Giri, Daniela Gîfu, Noel Batista Hernández, Hojjatollah Farahani, Huda E. Khalid, Irfan Deli, Saeid Jafari, Tèmítópé Gbóláhàn Jaíyéolá, Sripati Jha, Sudan Jha, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, M. Karthika, Kawther F. Alhasan, Giruta Kazakeviciute-Januskeviciene, Qaisar Khan, Kishore Kumar P K, Prem Kumar Singh, Ranjan Kumar, Maikel Leyva-Vázquez, Mahmoud Ismail, Tahir Mahmood, Hafsa Masood Malik, Mohammad Abobala, Mai Mohamed, Gunasekaran Manogaran, Seema Mehra, Kalyan Mondal, Mohamed Talea, Mullai Murugappan, Muhammad Akram, Muhammad Aslam Malik, Muhammad Khalid Mahmood, Nivetha Martin, Durga Nagarajan, Nguyen Van Dinh, Nguyen Xuan Thao, Lewis Nkenyereya, Jagan M. Obbineni, M. Parimala, S. K. Patro, Peide Liu, Pham Hong Phong, Surapati Pramanik, Gyanendra Prasad Joshi, Quek Shio Gai, R. Radha, A.A. Salama, S. Satham Hussain, Mehmet Șahin, Said Broumi, Ganeshsree Selvachandran, Selvaraj Ganesan, Shahbaz Ali, Shouzhen Zeng, Manjeet Singh, A. Stanis Arul Mary, Dragiša Stanujkić, Yusuf Șubaș, Rui-Pu Tan, Mirela Teodorescu, Selçuk Topal, Zenonas Turskis, Vakkas Uluçay, Norberto Valcárcel Izquierdo, V. Venkateswara Rao, Volkan Duran, Ying Li, Young Bae Jun, Wadei F. Al-Omeri, Jian-qiang Wang, Lihshing Leigh Wang, Edmundas Kazimieras Zavadskas.




Neutrosophic Sets and Systems


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.




Neutrosophic Sets and Systems – book series, Vol. 10, 201


Book Description

This volume is a collection of thirteen papers, written by different authors and co-authors (listed in the order of the papers): J. J. Peng and J. Q. Wang, E. Marei, S. Kar, K. Basu, S. Mukherjee, I. M. Hezam, M. Abdel-Baset and F. Smarandache, K. Mondal, S. Pramanik, A. Ionescu, M. R. Praveen and P. Sekar, B. Teodorescu, D. Kour and K. Basu, P. P. Dey and B. C. Giri, A. A. A. Agboola. In first paper, the authors studied Multi-valued Neutrosophic Sets and its Application in Multi-criteria Decision-Making Problems. More on neutrosophic soft rough sets and its modification is discussed in the second paper. Solution of Multi-Criteria Assignment Problem using Neutrosophic Set Theory are studied in third paper. In fourth paper, Taylor Series Approximation to Solve Neutrosophic Multiobjective Programming Problem. Similarly in fifth paper, Decision Making Based on Some similarity Measures under Interval Rough Neutrosophic Environment is discussed. In paper six, Neutralité neutrosophique et expressivité dans le style journalistique is studied by the author. Neutrosophic Semilattices and Their Properties given in seventh paper. Liminality and Neutrosophy is proposed in the next paper. Application of Extended Fuzzy Program-ming Technique to a real life Transportation Problem in Neutrosophic environment in the next paper. Further, TOPSIS for Single Valued Neutrosophic Soft Expert Set Based Multi-attribute Decision Making Problems is discussed by the authors in the tenth paper. In eleventh paper, Neutrosophic Quadruple Numbers, Refined Neutrosophic Quadruple Numbers, Absorbance Law, and the Multiplication of Neutrosophic Quadruple Numbers have been studied by the author. In the next paper, On Refined Neutrosophic Algebraic Structures. At the end, Neutrosophic Actions, Prevalence Order, Refinement of Neutrosophic Entities, and Neutrosophic Literal Logical Operators are introduced by the authors.




Neutrosophic Sets and Systems, vol. 10/2015


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.




SINGLE-OBJECTIVE LINEAR GOAL PROGRAMMING PROBLEM WITH NEUTROSOPHIC NUMBERS


Book Description

This paper deals with single-objective linear goal programming problem with neutrosophic numbers. The coefficients of objective function and the constraints are considered as neutrosophic numbers of the form (p + qI), where p, q are real numbers and I denotes indeterminacy. In the solution process, the neutrosophic numbers are transformed into interval numbers.