Solving ODEs with Maple V


Book Description

This resource manual/laboratory book shows students how to use the Maple computer algebra system to solve problems in ordinary differential equations. Projects, exercises, and explanations show readers how to get the most out of the Maple computer algebra




Differential Equations with Maple V®


Book Description

Differential Equations with Maple V provides an introduction and discussion of topics typically covered in an undergraduate course in ordinary differential equations as well as some supplementary topics such as Laplace transforms, Fourier series, and partial differential equations. It also illustrates how Maple V is used to enhance the study of differential equations not only by eliminating the computational difficulties, but also by overcoming the visual limitations associated with the solutions of differential equations. The book contains chapters that present differential equations and illustrate how Maple V can be used to solve some typical problems. The text covers topics on differential equations such as first-order ordinary differential equations, higher order differential equations, power series solutions of ordinary differential equations, the Laplace Transform, systems of ordinary differential equations, and Fourier Series and applications to partial differential equations. Applications of these topics are also provided. Engineers, computer scientists, physical scientists, mathematicians, business professionals, and students will find the book useful.




Solving Differential Equations with Maple V, Release 4


Book Description

This comprehensive book helps students tap into the power of Maple®, thereby simplifying the computations and graphics that are often required in the practical use of mathematics. Numerous examples and exercises provide a thorough introduction to the basic Maple® commands that are needed to solve differential equations. Topics include: numerical algorithms, first order linear systems, homogeneous and nonhomogeneous equations, beats and resonance, Laplace Transforms, qualitative theory, nonlinear systems, and much more.




Solving Nonlinear Partial Differential Equations with Maple and Mathematica


Book Description

The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).




Solving ODEs with MATLAB


Book Description

This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples.







Maple V: Mathematics and its Applications


Book Description

The Maple Summer Workshop and Symposium, MSWS '94, reflects the growing commu nity of Maple users around the world. This volume contains the contributed papers. A careful inspection of author affiliations will reveal that they come from North America, Europe, and Australia. In fact, fifteen come from the United States, two from Canada, one from Australia, and nine come from Europe. Of European papers, two are from Ger many, two are from the Netherlands, two are from Spain, and one each is from Switzerland, Denmark, and the United Kingdom. More important than the geographical diversity is the intellectual range of the contributions. We begin to see in this collection of works papers in which Maple is used in an increasingly flexible way. For example, there is an application in computer science that uses Maple as a tool to create a new utility. There is an application in abstract algebra where Maple has been used to create new functionalities for computing in a rational function field. There are applications to geometrical optics, digital signal processing, and experimental design.




Maple and Mathematica


Book Description

By presenting side-by-side comparisons, this handbook enables Mathematica users to quickly learn Maple, and vice versa. The parallel presentation enables students, mathematicians, scientists, and engineers to easily find equivalent functions on each of these algebra programs. The handbook provides core material for incorporating Maple and Mathematica as working tools into many different undergraduate mathematics courses.




Traveling Wave Analysis of Partial Differential Equations


Book Description

Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods. This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors' intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs. The Matlab and Maple software will be available for download from this website shortly. www.pdecomp.net - Includes a spectrum of applications in science, engineering, applied mathematics - Presents a combination of numerical and analytical methods - Provides transportable computer codes in Matlab and Maple




Advanced Problem Solving with Maple


Book Description

Problem Solving is essential to solve real-world problems. Advanced Problem Solving with Maple: A First Course applies the mathematical modeling process by formulating, building, solving, analyzing, and criticizing mathematical models. It is intended for a course introducing students to mathematical topics they will revisit within their further studies. The authors present mathematical modeling and problem-solving topics using Maple as the computer algebra system for mathematical explorations, as well as obtaining plots that help readers perform analyses. The book presents cogent applications that demonstrate an effective use of Maple, provide discussions of the results obtained using Maple, and stimulate thought and analysis of additional applications. Highlights: The book’s real-world case studies prepare the student for modeling applications Bridges the study of topics and applications to various fields of mathematics, science, and engineering Features a flexible format and tiered approach offers courses for students at various levels The book can be used for students with only algebra or calculus behind them About the authors: Dr. William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. Currently, he is an adjunct professor, Department of Mathematics, the College of William and Mary. He received his Ph.D. at Clemson University and has many publications and scholarly activities including twenty books and over one hundred and fifty journal articles. William C. Bauldry, Prof. Emeritus and Adjunct Research Prof. of Mathematics at Appalachian State University, received his PhD in Approximation Theory from Ohio State. He has published many papers on pedagogy and technology, often using Maple, and has been the PI of several NSF-funded projects incorporating technology and modeling into math courses. He currently serves as Associate Director of COMAP’s Math Contest in Modeling (MCM). *Please note that the Maple package, "PSM", is now on the public area of the Maple Cloud. To access it: • From the web: 1. Go to the website https://maple.cloud 2. Click on "packages" in the left navigation pane 3. Click on "PSM" in the list of packages. 4. Click the "Download" button to capture the package. • From Maple: 1. Click on the Maple Cloud icon (far right in the Maple window toolbar). Or click on the Maple Cloud button on Maple's Start page to go to the website. 2. Click on the "packages" in the navigation pane 3. Click on "PSM" in the list of packages. The package then downloads into Maple directly.