The Work of Mary Ellen Rudin


Book Description

Experts in the field of general topology describe and summarise the pioneering work of Mary Ellen Rudin, which opened the field called set-theoretic topology. Topics discussed include normality in products, BN, theorems from measure axioms, paracompactness in box products, Dowker spaces, S and L combinatorics, and Suslin spaces.










Algebraic Combinatorics


Book Description

Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.




Classic Papers in Combinatorics


Book Description

This volume surveys the development of combinatorics since 1930 by presenting in chronological order the fundamental results of the subject proved in over five decades of original papers by: T. van Aardenne-Ehrenfest.- R.L. Brooks.- N.G. de Bruijn.- G.F. Clements.- H.H. Crapo.- R.P. Dilworth.- J. Edmonds.- P. Erdös.- L.R. Ford, Jr.- D.R. Fulkerson.- D. Gale.- L. Geissinger.- I.J. Good.- R.L. Graham.- A.W. Hales.- P. Hall.- P.R. Halmos.- R.I. Jewett.- I. Kaplansky.- P.W. Kasteleyn.- G. Katona.- D.J. Kleitman.- K. Leeb.- B. Lindström.- L. Lovász.- D. Lubell.- C. St. J.A. Nash-Williams.- G. Pólya.-R. Rado.- F.P. Ramsey.- G.-C. Rota.- B.L. Rothschild.- H.J. Ryser.- C. Schensted.- M.P. Schützenberger.- R.P. Stanley.- G. Szekeres.- W.T. Tutte.- H.E. Vaughan.- H. Whitney.




Measures And Hilbert Lattices


Book Description

Contents: IntroductionOrthomodular MeasuresGleason's TheoremJordan-Hahn DecompositionOrthofacial Sets of StatesEquational Classes Related to StatesDecomposition of Complete Orthomodular LatticesCharacterization of Dimension LatticesBirkhoff-Von Neumann TheoremCoordinatizationsKakutani-Mackey TheoremKeller's Non-Classical Hilbert Spaces Readership: Mathematician and Physicist who are interested in Hilbert Lattices.




Handbook of Combinatorics Volume 1


Book Description

Handbook of Combinatorics, Volume 1 focuses on basic methods, paradigms, results, issues, and trends across the broad spectrum of combinatorics. The selection first elaborates on the basic graph theory, connectivity and network flows, and matchings and extensions. Discussions focus on stable sets and claw free graphs, nonbipartite matching, multicommodity flows and disjoint paths, minimum cost circulations and flows, special proof techniques for paths and circuits, and Hamilton paths and circuits in digraphs. The manuscript then examines coloring, stable sets, and perfect graphs and embeddings and minors. The book takes a look at random graphs, hypergraphs, partially ordered sets, and matroids. Topics include geometric lattices, structural properties, linear extensions and correlation, dimension and posets of bounded degree, hypergraphs and set systems, stability, transversals, and matchings, and phase transition. The manuscript also reviews the combinatorial number theory, point lattices, convex polytopes and related complexes, and extremal problems in combinatorial geometry. The selection is a valuable reference for researchers interested in combinatorics.




Handbook of Combinatorics


Book Description

Handbook of Combinatorics