Design of Underground Structures


Book Description

This book provides a general review of the literature on underground structures, combined with new specifications, engineering case studies, and numerical simulations based on the authors’ research. It focuses on the basic concepts, theories, and methods of the design of underground structures. After an introduction, it covers various topics, such as elastic foundation beam theory and numerical analysis methods for underground structures, as well as the design of shallow underground structures, diaphragm wall structures, shield tunnel structures, caisson structures, immersed tube structures, and integral tunnel structures. It also includes tables for calculating elastic foundation beam. This book is intended for senior undergraduate and graduate students majoring in urban underground space engineering, building engineering, highway engineering, railway engineering, bridge and tunnel engineering, water conservancy and hydropower engineering.




Geotechnics for Sustainable Infrastructure Development


Book Description

This book presents 09 keynote and invited lectures and 177 technical papers from the 4th International Conference on Geotechnics for Sustainable Infrastructure Development, held on 28-29 Nov 2019 in Hanoi, Vietnam. The papers come from 35 countries of the five different continents, and are grouped in six conference themes: 1) Deep Foundations; 2) Tunnelling and Underground Spaces; 3) Ground Improvement; 4) Landslide and Erosion; 5) Geotechnical Modelling and Monitoring; and 6) Coastal Foundation Engineering. The keynote lectures are devoted by Prof. Harry Poulos (Australia), Prof. Adam Bezuijen (Belgium), Prof. Delwyn Fredlund (Canada), Prof. Lidija Zdravkovic (UK), Prof. Masaki Kitazume (Japan), and Prof. Mark Randolph (Australia). Four invited lectures are given by Prof. Charles Ng, ISSMGE President, Prof.Eun Chul Shin, ISSMGE Vice-President for Asia, Prof. Norikazu Shimizu (Japan), and Dr.Kenji Mori (Japan).




Concrete for Underground Structures


Book Description

Concrete is a vital component of almost every underground construction project. Because it significantly impacts both the durability and cost of a project, owners, designers, and contractors are constantly challenged with designing and placing the concrete to meet their quality standards in the most cost-effective way. Concrete for Underground Structures: Guidelines for Design and Construction can make that task a lot easier. Instead of searching pages of scattered reference materials when writing specifications, this book is a one-source guide to help you quickly find the answers you need. The first resource of its kind, this practical nuts-and-bolts handbook provides an industry voice as well as recommendations for areas of concrete application. You'll get valuable insights into current best practices for all aspects of the design and construction of underground structural concrete. Internationally respected authors examine three key applications: cast-in-place concrete, precast concrete segmental linings, and shotcrete. Each chapter addresses the differences between aboveground and underground use. The various types of concrete admixtures are also discussed, and sample specifications for each are included. Concrete for Underground Structures is an indispensable resource for industry veterans as well as an educational tool for those who are new to the profession.




Structural Concrete


Book Description

Structural Concrete discusses the design and analysis of reinforced and prestressed concrete structural components and structures. Each of the eight chapters of the book tackles a specific area of concern in structural concrete. The text first deals with the serviceability and safety, and then proceeds to the properties of materials and mix designs. The next two chapters cover reinforced concrete beams and slabs. Chapter 5 discusses column and walls, while Chapter 6 tackles reinforced concrete frames and continuous beams and slabs. The next chapter discusses design structures, while the last chapter covers prestressed concrete. The text will be of great use to undergraduate students of civil and structural engineering. Professionals whose work involves concrete technology will also find the book useful.




North American Tunneling 2022 Proceedings


Book Description

Your timely source for more cost-effective and less disruptive solutions to your underground infrastructure needs. The North American Tunneling Conference is the premier biennial tunneling event for North America, bringing together the brightest, most resourceful, and innovative minds in the tunneling industry. It underscores the important role that the industry plans in the development of underground spaces, transportation and conveyance systems, and other forms of sustainable underground infrastructure. With every conference, the number of attendees and breadth of topics grows. The authors—expert and leaders in the industry—share the latest case histories, expertise, lessons learned, and real-world applications from around the globe. Crafted from a collection of 92 papers presented at the conference, this book takes you deep inside the projects. It includes sections on technology, planning, design, and case histories.




Fibre Reinforced Concrete: From Design to Structural Applications


Book Description

The first international FRC workshop supported by RILEM and ACI was held in Bergamo (Italy) in 2004. At that time, a lack of specific building codes and standards was identified as the main inhibitor to the application of this technology in engineering practice. The workshop aim was placed on the identification of applications, guidelines, and research needs in order for this advanced technology to be transferred to professional practice. The second international FRC workshop, held in Montreal (Canada) in 2014, was the first ACI-fib joint technical event. Many of the objectives identified in 2004 had been achieved by various groups of researchers who shared a common interest in extending the application of FRC materials into the realm of structural engineering and design. The aim of the workshop was to provide the State-of-the-Art on the recent progress that had been made in term of specifications and actual applications for buildings, underground structures, and bridge projects worldwide. The rapid development of codes, the introduction of new materials and the growing interest of the construction industry suggested presenting this forum at closer intervals. In this context, the third international FRC workshop was held in Desenzano (Italy), four years after Montreal. In this first ACI-fib-RILEM joint technical event, the maturity gained through the recent technological developments and large-scale applications were used to show the acceptability of the concrete design using various fibre compositions. The growing interests of civil infrastructure owners in ultra-high-performance fibre-reinforced concrete (UHPFRC) and synthetic fibres in structural applications bring new challenges in terms of concrete technology and design recommendations. In such a short period of time, we have witnessed the proliferation of the use of fibres as structural reinforcement in various applications such as industrial floors, elevated slabs, precast tunnel lining sections, foundations, as well as bridge decks. We are now moving towards addressing many durability-based design requirements by the use of fibres, as well as the general serviceability-based design. However, the possibility of having a residual tensile strength after cracking of the concrete matrix requires a new conceptual approach for a proper design of FRC structural elements. With such a perspective in mind, the aim of FRC2018 workshop was to provide the State-of-the-Art on the recent progress in terms of specifications development, actual applications, and to expose users and researchers to the challenges in the design and construction of a wide variety of structural applications. Considering that at the time of the first workshop, in 2004, no structural codes were available on FRC, we have to recognize the enormous work done by researchers all over the world, who have presented at many FRC events, and convinced code bodies to include FRC among the reliable alternatives for structural applications. This will allow engineers to increasingly utilize FRC with confidence for designing safe and durable structures. Many presentations also clearly showed that FRC is a promising material for efficient rehabilitation of existing infrastructure in a broad spectrum of repair applications. These cases range from sustained gravity loads to harsh environmental conditions and seismic applications, which are some of the broadest ranges of applications in Civil Engineering. The workshop was attended by researchers, designers, owner and government representatives as well as participants from the construction and fibre industries. The presence of people with different expertise provided a unique opportunity to share knowledge and promote collaborative efforts. These interactions are essential for the common goal of making better and sustainable constructions in the near future. The workshop was attended by about 150 participants coming from 30 countries. Researchers from all the continents participated in the workshop, including 24 Ph.D. students, who brought their enthusiasm in FRC structural applications. For this reason, the workshop Co-chairs sincerely thank all the enterprises that sponsored this event. They also extend their appreciation for the support provided by the industry over the last 30 years which allowed research centers to study FRC materials and their properties, and develop applications to making its use more routine and accepted throughout the world. Their important contribution has been essential for moving the knowledge base forward. Finally, we appreciate the enormous support received from all three sponsoring organizations of ACI, fib and Rilem and look forward to paving the path for future collaborations in various areas of common interest so that the developmental work and implementation of new specifications and design procedures can be expedited internationally.




Sprayed Concrete Lined Tunnels


Book Description

Sprayed concrete lined (SCL) tunnels are growing rapidly in popularity due to their versatility. The design and construction of both hard rock and soft ground tunnels has been revolutionised by the advent of the SCL method and now the use of permanent sprayed concrete linings has unlocked the true potential of the method to minimise construction costs and times. Yet the complex early age behaviour of the sprayed concrete makes the design difficult and requires a robust management system during construction. Consequently the great advantages of the method must be balanced against the risks, as a few high-profile tunnel collapses have illustrated. Practising engineers on site, in the design office or in client organizations will find this book an excellent introduction. It covers all aspects of SCL tunnelling – from the constituents of sprayed concrete to detailed design and management during construction. Although there is a close interdependence between all the facets of sprayed concrete, few engineers have the right breadth of experience and expertise to cover all of them. This urgently needs to be transferred to the wider engineering community as SCL tunnels play an increasingly important role in the delivery of the underground infrastructure which modern urban life demands. In this second edition, beyond a general updating to reflect new developments, the sections on permanent sprayed concrete, the innovative technology of spray applied waterproofing membranes, fibre reinforcement (both steel and macrosynthetic) and composite lining design have been expanded. Sustainability and environmental impact are addressed in a new section.







Concrete


Book Description




Information Circular


Book Description