Sorption Enhanced Reaction Processes


Book Description

This book investigates the development of sorption enhanced reaction processes (SERPs) with detailed modelling and simulation, design and operation of units. SERPs are processes intensified by combining adsorption and reaction, reaction and membranes or reaction/adsorption/membranes in a single unit in order to overcome thermodynamic limitations of conversion in reversible reactions. The focus here is on gas phase and liquid phase processes involving different technologies, including pressure swing adsorptive reactors, membrane reactors and simulated moving bed reactors. Emphasis is also given to presenting data and practical applications of SERP products. Sorption Enhanced Reaction Processes provides undergraduate and graduate students of chemistry and chemical engineering, researchers and industrial engineers with a clear path towards process development of SERP, whatever the area of application.




Sorption Enhanced Reaction Processes


Book Description

This book investigates the development of sorption enhanced reaction processes (SERPs) with detailed modelling and simulation, design and operation of units. SERPs are processes intensified by combining adsorption and reaction, reaction and membranes or reaction/adsorption/membranes in a single unit in order to overcome thermodynamic limitations of conversion in reversible reactions. The focus here is on gas phase and liquid phase processes involving different technologies, including pressure swing adsorptive reactors, membrane reactors and simulated moving bed reactors. Emphasis is also given to presenting data and practical applications of SERP products.Sorption Enhanced Reaction Processes provides undergraduate and graduate students of chemistry and chemical engineering, researchers and industrial engineers with a clear path towards process development of SERP, whatever the area of application.




Process Intensification


Book Description

Process Intensification: Engineering for Efficiency, Sustainability and Flexibility is the first book to provide a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems. Process intensification is a chemical and process design approach that leads to substantially smaller, cleaner, safer, and more energy efficient process technology. It improves process flexibility, product quality, speed to market and inherent safety, with a reduced environmental footprint. This book represents a valuable resource for engineers working with leading-edge process technologies, and those involved research and development of chemical, process, environmental, pharmaceutical, and bioscience systems. - No other reference covers both the technology and application of PI, addressing fundamentals, industry applications, and including a development and implementation guide - Covers hot and high growth topics, including emission prevention, sustainable design, and pinch analysis - World-class authors: Colin Ramshaw pioneered PI at ICI and is widely credited as the father of the technology




Hydrogen and Syngas Production and Purification Technologies


Book Description

Covers the timely topic of fuel cells and hydrogen-based energy from its fundamentals to practical applications Serves as a resource for practicing researchers and as a text in graduate-level programs Tackles crucial aspects in light of the new directions in the energy industry, in particular how to integrate fuel processing into contemporary systems like nuclear and gas power plants Includes homework-style problems




The Chemical Reactor from Laboratory to Industrial Plant


Book Description

This graduate textbook, written by a former lecturer, addresses industrial chemical reaction topics, focusing on the commercial-scale exploitation of chemical reactions. It introduces students to the concepts behind the successful design and operation of chemical reactors, with an emphasis on qualitative arguments, simple design methods, graphical procedures, and frequent comparison of capabilities of the major reactor types. It starts by discussing simple ideas before moving on to more advanced concepts with the support of numerous case studies. Many simple and advanced exercises are present in each chapter and the detailed MATLAB code for their solution is available to the reader as supplementary material on Springer website. It is written for MSc chemical engineering students and novice researchers working in industrial laboratories.




Sustainable Strategies for the Upgrading of Natural Gas: Fundamentals, Challenges, and Opportunities


Book Description

Energy and feedstock materials for the chemical industry are in increasing demand and, with constraints related to the availability and use of oil, the energy and chemical industry is undergoing considerable changes. In recent years, major restructuring has occurred in the oil, petrochemical, and chemical industry, with increasing attention devoted to the use of natural gas, methane in particular, as a chemical feedstock rather than just as a fuel. The conversion of remote natural gas into liquid fuels or other transportable chemicals is a challenge to industrial catalysis. Few processes exist so far with the major ones involving the conversion of natural gas to synthesis gas by steam reforming, CO2 reforming, or partial oxidation, followed by the syntheses of methanol, hydrocarbons (Fischer-Tropsch synthesis), or ammonia. In this book, a comprehensive overview of the field of processing natural gas is given, through a series of chapters written by leading scientists and engineers in the field. New developments are discussed and current work relevant to the area is shown by a series of recent works by researchers working in this and related fields.




Water Gas Shift Reaction


Book Description

Water Gas Shift Reaction: Research Developments and Applications outlines the importance of hydrogen as a future fuel, along with the various hydrogen production methods. The book explains the development of catalysts for Water Gas Shift (WGS) reaction at different temperatures and steam/CO ratios, and also discussing the effect of different dopants on the WGS activity of iron oxide and the promotion and inhibition roles of the dopants on the WGS activity of iron oxide are explained. In addition, the book describes extensive characterization of modified ferrite catalysts, especially with Mossbauer spectroscopy and its advantage in understanding properties of metal doped ferrite catalysts, the exact dopant location, and its effect on electron hopping capability and WGS activity of Fe redox couple. - Outlines the importance of the Water Gas Shift Reaction and its application for hydrogen production - Provides detailed information on potential catalysts, their development, and their pros and cons, giving the reader insights on how modified ferrite catalysts work at different temperatures and different steam to CO ratios - Reviews hydrogen technology, its current importance, and production methods - Presents a clear presentation of the topics with many graphics and tables - Offers basic and advanced knowledge of catalysts characterization instrumental techniques







Power-to-Gas: Technology and Business Models


Book Description

Increased production of energy from renewable sources leads to a need for both new and enhanced capacities for energy transmission and intermediate storage. The book first compares different available storage options and then introduces the power-to-gas concept in a comprehensive overview of the technology. The state of the art, advancements, and future requirements for both water electrolysis and methanation are described. The integration of renewable hydrogen and methane into the gas grid is discussed in terms of the necessary technological measures to be taken. Because the power-to-gas system is very flexible, providing numerous specific applications for different targets within the energy sector, possible business models are presented on the basis of various process chains taking into account different plant scales and operating scenarios. The influence of the scale and the type of the integration of the technology into the existing energy network is highlighted with an emphasis on economic consequences. Finally, legal aspects of the operation and integration of the power-to-gas system are discussed.




Separation Technologies for the Industries of the Future


Book Description

Separation processes—or processes that use physical, chemical, or electrical forces to isolate or concentrate selected constituents of a mixture—are essential to the chemical, petroleum refining, and materials processing industries. In this volume, an expert panel reviews the separation process needs of seven industries and identifies technologies that hold promise for meeting these needs, as well as key technologies that could enable separations. In addition, the book recommends criteria for the selection of separations research projects for the Department of Energy's Office of Industrial Technology.