Source Coding Theory


Book Description

Source coding theory has as its goal the characterization of the optimal performance achievable in idealized communication systems which must code an information source for transmission over a digital communication or storage channel for transmission to a user. The user must decode the information into a form that is a good approximation to the original. A code is optimal within some class if it achieves the best possible fidelity given whatever constraints are imposed on the code by the available channel. In theory, the primary constraint imposed on a code by the channel is its rate or resolution, the number of bits per second or per input symbol that it can transmit from sender to receiver. In the real world, complexity may be as important as rate. The origins and the basic form of much of the theory date from Shan non's classical development of noiseless source coding and source coding subject to a fidelity criterion (also called rate-distortion theory) [73] [74]. Shannon combined a probabilistic notion of information with limit theo rems from ergodic theory and a random coding technique to describe the optimal performance of systems with a constrained rate but with uncon strained complexity and delay. An alternative approach called asymptotic or high rate quantization theory based on different techniques and approx imations was introduced by Bennett at approximately the same time [4]. This approach constrained the delay but allowed the rate to grow large.




Distributed Source Coding


Book Description

The advent of wireless sensor technology and ad-hoc networks has made DSC a major field of interest. Edited and written by the leading players in the field, this book presents the latest theory, algorithms and applications, making it the definitive reference on DSC for systems designers and implementers, researchers, and graduate students. This book gives a clear understanding of the performance limits of distributed source coders for specific classes of sources and presents the design and application of practical algorithms for realistic scenarios. Material covered includes the use of standard channel codes, such as LDPC and Turbo codes, to DSC, and discussion of the suitability of compressed sensing for distributed compression of sparse signals. Extensive applications are presented and include distributed video coding, microphone arrays and securing biometric data. Clear explanation of the principles of distributed source coding (DSC), a technology that has applications in sensor networks, ad-hoc networks, and distributed wireless video systems for surveillance Edited and written by the leading players in the field, providing a complete and authoritative reference Contains all the latest theory, practical algorithms for DSC design and the most recently developed applications




Recursive Source Coding


Book Description

The spreading of digital technology has resulted in a dramatic increase in the demand for data compression (DC) methods. At the same time, the appearance of highly integrated elements has made more and more com plicated algorithms feasible. It is in the fields of speech and image trans mission and the transmission and storage of biological signals (e.g., ECG, Body Surface Mapping) where the demand for DC algorithms is greatest. There is, however, a substantial gap between the theory and the practice of DC: an essentially nonconstructive information theoretical attitude and the attractive mathematics of source coding theory are contrasted with a mixture of ad hoc engineering methods. The classical Shannonian infor mation theory is fundamentally different from the world of practical pro cedures. Theory places great emphasis on block-coding while practice is overwhelmingly dominated by theoretically intractable, mostly differential predictive coding (DPC), algorithms. A dialogue between theory and practice has been hindered by two pro foundly different conceptions of a data source: practice, mostly because of speech compression considerations, favors non stationary models, while the theory deals mostly with stationary ones.




Distributed Source Coding


Book Description

Distributed source coding is one of the key enablers for efficient cooperative communication. The potential applications range from wireless sensor networks, ad-hoc networks, and surveillance networks, to robust low-complexity video coding, stereo/Multiview video coding, HDTV, hyper-spectral and multispectral imaging, and biometrics. The book is divided into three sections: theory, algorithms, and applications. Part one covers the background of information theory with an emphasis on DSC; part two discusses designs of algorithmic solutions for DSC problems, covering the three most important DSC problems: Slepian-Wolf, Wyner-Ziv, and MT source coding; and part three is dedicated to a variety of potential DSC applications. Key features: Clear explanation of distributed source coding theory and algorithms including both lossless and lossy designs. Rich applications of distributed source coding, which covers multimedia communication and data security applications. Self-contained content for beginners from basic information theory to practical code implementation. The book provides fundamental knowledge for engineers and computer scientists to access the topic of distributed source coding. It is also suitable for senior undergraduate and first year graduate students in electrical engineering; computer engineering; signal processing; image/video processing; and information theory and communications.




Information Theory And Coding


Book Description

Information Theory and Channel CapacityMeasure of Information, Average Information Content of Symbols in Long Independent Sequences, Average Information Content of Symbols in Long Dependent Sequences, Mark-off Statistical Model for Information Sources, Entropy and Information Rate of Mark-off Sources, Encoding of the Source Output, Shannon s Encoding Algorithm, Communication Channels, Discrete Communication Channels, Rate of Information Transmission Over a Discrete Channel, Capacity of a Discrete Memoryless Channel, Discrete Channels with Memory Continuous Channels, Shannon-Hartley Law and its Implications.Fundamental Limits on PerformanceSome Properties of Entropy, Extension of a DMS, Prefix Coding, Source Coding Theorem, Huffman Coding, Mutual Information, Properties of Mutual Information, Differential Entropy and Mutual Information for Continuous Ensembles.Error Control CodingRationale for Coding and Types of Codes, Discrete Memory less Channels, Examples of Error Control Coding, Methods of Controlling Errors, Types of Errors, Types of Codes, Linear Block Codes, Matrix Description of Linear Block Codes, Error Detection and Error Correction Capabilities of Linear Block Codes, Single Error Correcting Hamming Codes, Lookup Table (or Syndrome) Decoding using Standard Array, Binary Cyclic Codes, Algebraic Structures of Cyclic Codes, Encoding using and (n k) Bit Shift Register, Syndrome Calculation, Error Detection and Error Correction, BCH Codes, RS Codes, Golay Codes, Shortened Cyclic Codes, Burst Error Correcting Codes, Convolution Codes, Time Domain Approach, Transfer Domain Approach, State, Tree and Trellis diagrams, Encoders and Decoders (using Viterbi algorithm only) for (n,k,1) Convolution Codes.




Source Coding Theory


Book Description




Source Coding Theory


Book Description




Source and Channel Coding


Book Description

oW should coded communication be approached? Is it about prob H ability theorems and bounds, or about algorithms and structures? The traditional course in information theory and coding teaches these together in one course in which the Shannon theory, a probabilistic the ory of information, dominates. The theory's predictions and bounds to performance are valuable to the coding engineer, but coding today is mostly about structures and algorithms and their size, speed and error performance. While coding has a theoretical basis, it has a practical side as well, an engineering side in which costs and benefits matter. It is safe to say that most of the recent advances in information theory and coding are in the engineering of coding. These thoughts motivate the present text book: A coded communication book based on methods and algorithms, with information theory in a necessary but supporting role. There has been muchrecent progress in coding, both inthe theory and the practice, and these pages report many new advances. Chapter 2 cov ers traditional source coding, but also the coding ofreal one-dimensional sources like speech and new techniques like vector quantization. Chapter 4 is a unified treatment of trellis codes, beginning with binary convolu tional codes and passing to the new trellis modulation codes.




Advances in Source Coding


Book Description




Selected Topics In Information And Coding Theory


Book Description

The last few years have witnessed rapid advancements in information and coding theory research and applications. This book provides a comprehensive guide to selected topics, both ongoing and emerging, in information and coding theory. Consisting of contributions from well-known and high-profile researchers in their respective specialties, topics that are covered include source coding; channel capacity; linear complexity; code construction, existence and analysis; bounds on codes and designs; space-time coding; LDPC codes; and codes and cryptography.All of the chapters are integrated in a manner that renders the book as a supplementary reference volume or textbook for use in both undergraduate and graduate courses on information and coding theory. As such, it will be a valuable text for students at both undergraduate and graduate levels as well as instructors, researchers, engineers, and practitioners in these fields.Supporting Powerpoint Slides are available upon request for all instructors who adopt this book as a course text.