The Nuclear Many-Body Problem 2001


Book Description

An expert and illuminating review of the leading models of nuclear structure: effective field theories based on quantum chromodynamics; ab initio models based on Monte Carlo methods employing effective nucleon-nucleon interactions; diagonalization and the Monto Carlo shell model; non-relativistic and relativistic mean-field theory and its extensions; and symmetry-dictated approaches. Theoretical advances in major areas of nuclear structure are discussed: nuclei far from stability and radioactive ion beams; gamma ray spectroscopy; nuclear astrophysics and electroweak interactions in nuclei; electron scattering; nuclear superconductivity; superheavy elements. The interdisciplinary aspects of the many-body problem are also discussed. Recent experimental data are examined in light of state-of-the-art calculations. Recent advances in several broad areas of theoretical structure are covered, making the book ideal as a supplementary textbook.




Literature 1991, Part 2


Book Description

"Astronomy and Astrophysics Abstracts" appearing twice a year has become oneof the fundamental publications in the fields of astronomy, astrophysics andneighbouring sciences. It is the most important English-language abstracting journal in the mentioned branches. The abstrats are classified under more than a hundred subject categories, thus permitting a quick survey of the whole extended material. The AAA is a valuable and important publication for all students and scientists working in the fields of astronomy and related sciences. As such it represents a necessary ingredient of any astronomical library all over the world.







NIST Serial Holdings


Book Description










Scientific and Technical Information Resources


Book Description

This book focuses on current practices in scientific and technical communication, historical aspects, and characteristics and bibliographic control of various forms of scientific and technical literature. It integrates the inventory approach for scientific and technical communication.




Chaos And Gauge Field Theory


Book Description

This book introduces a rapidly growing new research area — the study of dynamical properties of elementary fields. The methods used in this field range from algebraic topology to parallel computer programming. The main aim of this research is to understand the behavior of elementary particles and fields under extreme circumstances, first of all at high temperature and energy density generated in the largest accelerators of the world and supposed to be present in the early evolution of our Universe shortly after the Big Bang.In particular, chaos is rediscovered in a new appearance in these studies: in gauge theories the well-known divergence of initially adjacent phase space trajectories leads over into a quasi-thermal distribution of energy with a saturated average distance of different field configurations. This particular behavior is due to the compactness of the gauge group.Generally this book is divided into two main parts: the first part mainly deals with the “classical” discovery of chaos in gauge field theory while the second part presents methods and research achievements in recent years. One chapter is devoted entirely to the presentation and discussion of computational problems. The major theme, returning again and again throughout the book, is of course the phenomenon with a thousand faces — chaos itself.This book is intended to be a research book which introduces the reader to a new research field, presenting the basic new ideas in detail but just briefly touching on the problems of other related fields, like perturbative or lattice gauge theory, or dissipative chaos. The terminology of these related fields are, however, used.Exercises are also included in this book. They deepen the reader's understanding of special issues and at the same time offer more information on related problems. For the convenience of the fast reader, solutions are presented right after the problems.




Cracking the Quantum Code of the Universe


Book Description

If the new boson is indeed the Higgs particle, its discovery represents an important milestone in the history of particle physics. However, despite the pressure to award Nobel Prizes to physicists associated with the Higgs boson, John Moffat argues that there still remain important data analyses to be performed before uncorking the champagne. John Moffat is Professor Emeritus of Physics at the University of Toronto and a senior researcher at the Perimeter Institute for Theoretical Physics. Well-known for his outside-the-box research on topics such as dark matter, dark energy, and the varying speed of light cosmology (VSL), his new book takes a critical look at the hype surrounding the Higgs boson. In the process, he presents a cogent and often entertaining history of particle physics and an exploration of alternative theories of particle physics that do not feature the Higgs boson, including his own. He gives a detailed and personal description of how theoretical physicists come up with new theories, and emphasizes how carefully experimental physicists must interpret the complex data now coming out of accelerators like the Large Hadron Collider (LHC). The book does not shy away from controversial topics such as the sociology of particle physics. There is immense pressure on projects like the $9 billion LHC to come up with positive results in order to secure funding for the future. Yet to date, the Higgs boson may be the only positive result to emerge from the LHC experiments. The searches for dark matter particles, mini-black holes, extra dimensions, and supersymmetric particles have all come up empty-handed, with serious consequences for theoretical physics, including string theory and gravity theory. John Moffat is also the author of Reinventing Gravity (2008) and Einstein Wrote Back (2010).




Fractional Calculus: An Introduction For Physicists (2nd Edition)


Book Description

The book presents a concise introduction to the basic methods and strategies in fractional calculus and enables the reader to catch up with the state of the art in this field as well as to participate and contribute in the development of this exciting research area.The contents are devoted to the application of fractional calculus to physical problems. The fractional concept is applied to subjects in classical mechanics, group theory, quantum mechanics, nuclear physics, hadron spectroscopy and quantum field theory and it will surprise the reader with new intriguing insights.This new, extended edition now also covers additional chapters about image processing, folded potentials in cluster physics, infrared spectroscopy and local aspects of fractional calculus. A new feature is exercises with elaborated solutions, which significantly supports a deeper understanding of general aspects of the theory. As a result, this book should also be useful as a supporting medium for teachers and courses devoted to this subject.