Handbook of Modal Logic


Book Description

The Handbook of Modal Logic contains 20 articles, which collectively introduce contemporary modal logic, survey current research, and indicate the way in which the field is developing. The articles survey the field from a wide variety of perspectives: the underling theory is explored in depth, modern computational approaches are treated, and six major applications areas of modal logic (in Mathematics, Computer Science, Artificial Intelligence, Linguistics, Game Theory, and Philosophy) are surveyed. The book contains both well-written expository articles, suitable for beginners approaching the subject for the first time, and advanced articles, which will help those already familiar with the field to deepen their expertise. Please visit: http://people.uleth.ca/~woods/RedSeriesPromo_WP/PubSLPR.html - Compact modal logic reference - Computational approaches fully discussed - Contemporary applications of modal logic covered in depth




Technical Translations


Book Description




Domain Decomposition Methods in Scientific and Engineering Computing


Book Description

This book contains proceedings from the Seventh International Conference on Domain Decomposition Methods, held at Pennsylvania State University in October 1993. The term ``domain decomposition'' has for nearly a decade been associated with the partly iterative, partly direct algorithms explored in the proceedings of this conference. Noteworthy trends in the current volume include progress in dealing with so-called ``bad parameters'' in elliptic partial differential equation problems, as well as developments in partial differential equations outside of the elliptically-dominated framework. Also described here are convergence and complexity results for novel discretizations, which bring with them new challenges in the derivation of appropriate operators for coarsened spaces. Implementations and architectural considerations are discussed, as well as partitioning tools and environments. In addition, the book describes a wide array of applications, from semiconductor device simulation to structural mechanics to aerodynamics. Presenting many of the latest results in the field, this book offers readers an up-to-date guide to the many facets of the theory and practice of domain decomposition.




High Dimensional Probability VII


Book Description

This volume collects selected papers from the 7th High Dimensional Probability meeting held at the Institut d'Études Scientifiques de Cargèse (IESC) in Corsica, France. High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other subfields of mathematics, statistics, and computer science. These include random matrices, nonparametric statistics, empirical processes, statistical learning theory, concentration of measure phenomena, strong and weak approximations, functional estimation, combinatorial optimization, and random graphs. The contributions in this volume show that HDP theory continues to thrive and develop new tools, methods, techniques and perspectives to analyze random phenomena.







Variational Analysis and Applications


Book Description

This Volume contains the (refereed) papers presented at the 38th Conference of the School of Mathematics "G.Stampacchia" of the "E.Majorana" Centre for Scientific Culture of Erice (Sicily), held in Memory ofG. Stampacchia and J.-L. Lions in the period June 20 - July 2003. The presence of participants from Countries has greatly contributed to the success of the meeting. The School of Mathematics was dedicated to Stampacchia, not only for his great mathematical achievements, but also because He founded it. The core of the Conference has been the various features of the Variational Analysis and their motivations and applications to concrete problems. Variational Analysis encompasses a large area of modem Mathematics, such as the classical Calculus of Variations, the theories of perturbation, approximation, subgradient, subderivates, set convergence and Variational Inequalities, and all these topics have been deeply and intensely dealt during the Conference. In particular, Variational Inequalities, which have been initiated by Stampacchia, inspired by Signorini Problem and the related work of G. Fichera, have offered a very great possibility of applications to several fundamental problems of Mathematical Physics, Engineering, Statistics and Economics. The pioneer work of Stampacchia and Lions can be considered as the basic kernel around which Variational Analysis is going to be outlined and constructed. The Conference has dealt with both finite and infinite dimensional analysis, showing that to carry on these two aspects disjointly is unsuitable for both.




Introduction to the Modern Theory of Dynamical Systems


Book Description

This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.




Larisa Maksimova on Implication, Interpolation, and Definability


Book Description

This edited volume focuses on the work of Professor Larisa Maksimova, providing a comprehensive account of her outstanding contributions to different branches of non-classical logic. The book covers themes ranging from rigorous implication, relevance and algebraic logic, to interpolation, definability and recognizability in superintuitionistic and modal logics. It features both her scientific autobiography and original contributions from experts in the field of non-classical logics. Professor Larisa Maksimova's influential work involved combining methods of algebraic and relational semantics. Readers will be able to trace both influences on her work, and the ways in which her work has influenced other logicians. In the historical part of this book, it is possible to trace important milestones in Maksimova’s career. Early on, she developed an algebraic semantics for relevance logics and relational semantics for the logic of entailment. Later, Maksimova discovered that among the continuum of superintuitionisitc logics there are exactly three pretabular logics. She went on to obtain results on the decidability of tabularity and local tabularity problems for superintuitionistic logics and for extensions of S4. Further investigations by Maksimova were aimed at the study of fundamental properties of logical systems (different versions of interpolation and definability, disjunction property, etc.) in big classes of logics, and on decidability and recognizability of such properties. To this end she determined a powerful combination of algebraic and semantic methods, which essentially determine the modern state of investigations in the area, as can be seen in the later chapters of this book authored by leading experts in non-classical logics. These original contributions bring the reader up to date on the very latest work in this field.




Encyclopaedia of Mathematics


Book Description