Space-frequency Correlations in Multistatic Acoustic Reverberation Due to a Wind-driven Sea Surface


Book Description

Analytic methods are used to assess the impact of the two-dimensional (2-D) wave spectrum of a wind-driven sea on multistatic low-frequency surface reverberation. The problem is initially posed with a narrowband source beneath a time-dependent sea surface in an ocean that can have depth dependence and bottom layering. The propagated signal interacts with the slower moving surface waves to produce a narrowband scattered field. The small-waveheight approximation is applied to a deterministic sea surface to express the scattered field in terms of the surface elevation and the Green's function for a perfectly calm sea. Randomness is then incorporated into the surface description, and its impact is formulated for an arbitrarily placed pair of receivers. The three-dimensional (3-D) cross-spectral density (CSD) of the reverberation is reduced to a sum of baseband and sideband terms formulated as multiple mean-sea-surface integrals. The sideband result is identified as an active scattering generalization of the van Cittert-Zernike theorem from partial coherence theory. The focus is then narrowed to shallow deployment in a homogeneous ocean, and stationary-phase estimates are used to produce analytic expressions for the CSD. The zero-Doppler component and Bragg-Doppler sidebands are expressed in terms of the power spectrum of the source, the power spectrum and directionality of the surface waves, and the multistatic source/receiver geometry. Sample sideband calculations are provided to illustrate the results, and system implications are considered.







Springer Handbook of Acoustics


Book Description

This is an unparalleled modern handbook reflecting the richly interdisciplinary nature of acoustics edited by an acknowledged master in the field. The handbook reviews the most important areas of the subject, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest research and applications are incorporated throughout, including computer recognition and synthesis of speech, physiological acoustics, diagnostic imaging and therapeutic applications and acoustical oceanography. An accompanying CD-ROM contains audio and video files.




Applied Underwater Acoustics


Book Description

Applied Underwater Acoustics meets the needs of scientists and engineers working in underwater acoustics and graduate students solving problems in, and preparing theses on, topics in underwater acoustics. The book is structured to provide the basis for rapidly assimilating the essential underwater acoustic knowledge base for practical application to daily research and analysis. Each chapter of the book is self-supporting and focuses on a single topic and its relation to underwater acoustics. The chapters start with a brief description of the topic's physical background, necessary definitions, and a short description of the applications, along with a roadmap to the chapter. The subtopics covered within individual subchapters include most frequently used equations that describe the topic. Equations are not derived, rather, assumptions behind equations and limitations on the applications of each equation are emphasized. Figures, tables, and illustrations related to the sub-topic are presented in an easy-to-use manner, and examples on the use of the equations, including appropriate figures and tables are also included. - Provides a complete and up-to-date treatment of all major subjects of underwater acoustics - Presents chapters written by recognized experts in their individual field - Covers the fundamental knowledge scientists and engineers need to solve problems in underwater acoustics - Illuminates, in shorter sub-chapters, the modern applications of underwater acoustics that are described in worked examples - Demands no prior knowledge of underwater acoustics, and the physical principles and mathematics are designed to be readily understood by scientists, engineers, and graduate students of underwater acoustics - Includes a comprehensive list of literature references for each chapter




Underwater Acoustic Data Processing


Book Description

This book contains the papers that were accepted for presentation at the 1988 NATO Advanced Study Institute on Underwater Acoustic Data Processing, held at the Royal Military College of Canada from 18 to 29 July, 1988. Approximately 110 participants from various NATO countries were in attendance during this two week period. Their research interests range from underwater acoustics to signal processing and computer science; some are renowned scientists and some are recent Ph.D. graduates. The purpose of the ASI was to provide an authoritative summing up of the various research activities related to sonar technology. The exposition on each subject began with one or two tutorials prepared by invited lecturers, followed by research papers which provided indications of the state of development in that specific area. I have broadly classified the papers into three sections under the titles of I. Propagation and Noise, II. Signal Processing and III. Post Processing. The reader will find in Section I papers on low frequency acoustic sources and effects of the medium on underwater acoustic propagation. Problems such as coherence loss due to boundary interaction, wavefront distortion and multipath transmission were addressed. Besides the medium, corrupting noise sources also have a strong influence on the performance of a sonar system and several researchers described methods of modeling these sources.




Underwater Acoustic Modeling


Book Description

Underwater Acoustic Modeling provides the only comprehensive source on how to translate our physical understanding of sound in the sea into mathematical formulas solvable by computers.







Underwater Acoustic Modeling and Simulation


Book Description

Underwater Acoustic Modeling and Simulation, Fourth Edition continues to provide the most authoritative overview of currently available propagation, noise, reverberation, and sonar-performance models. This fourth edition of a bestseller discusses the fundamental processes involved in simulating the performance of underwater acoustic systems and emphasizes the importance of applying the proper modeling resources to simulate the behavior of sound in virtual ocean environments. New to the Fourth Edition Extensive new material that addresses recent advances in inverse techniques and marine-mammal protection Problem sets in each chapter Updated and expanded inventories of available models Designed for readers with an understanding of underwater acoustics but who are unfamiliar with the various aspects of modeling, the book includes sufficient mathematical derivations to demonstrate model formulations and provides guidelines for selecting and using the models. Examples of each type of model illustrate model formulations, model assumptions, and algorithm efficiency. Simulation case studies are also included to demonstrate practical applications. Providing a thorough source of information on modeling resources, this book examines the translation of our physical understanding of sound in the sea into mathematical models that simulate acoustic propagation, noise, and reverberation in the ocean. The text shows how these models are used to predict and diagnose the performance of complex sonar systems operating in the undersea environment.




Advances in Communication, Devices and Networking


Book Description

The book covers recent trends in the field of devices, wireless communication and networking. It presents the outcomes of the International Conference in Communication, Devices and Networking (ICCDN 2018), which was organized by the Department of Electronics and Communication Engineering, Sikkim Manipal Institute of Technology, Sikkim, India on 2–3 June, 2018. Gathering cutting-edge research papers prepared by researchers, engineers and industry professionals, it will help young and experienced scientists and developers alike to explore new perspectives, and offer them inspirations on addressing real-world problems in the field of electronics, communication, devices and networking.




Acoustics


Book Description

Presents the main basis of modelling in acoustics. Includes the procedures used to describe a physical phenomenon by a system of equations and then to solve this system by analytical and/or numerical methods.