Spark SQL 2.x Fundamentals and Cookbook


Book Description

Apache Spark is one of the fastest growing technology in BigData computing world. It support multiple programming languages like Java, Scala, Python and R. Hence, many existing and new framework started to integrate Spark platform as well in their platform e.g. Hadoop, Cassandra, EMR etc. While creating Spark certification material HadoopExam technical team found that there is no proper material and book is available for the Spark SQL (version 2.x) which covers the concepts as well as use of various features and found difficulty in creating the material. Therefore, they decided to create full length book for Spark SQL and outcome of that is this book. In this book technical team try to cover both fundamental concepts of Spark SQL engine and many exercises approx. 35+ so that most of the programming features can be covered. There are approximately 35 exercises and total 15 chapters which covers the programming aspects of SparkSQL. All the exercises given in this book are written using Scala. However, concepts remain same even if you are using different programming language. This book is good for following audiance - Data scientists - Spark Developer - Data Engineer - Data Analytics - Java/Python Developer - Scala Developer




Spark SQL 2.x Fundamentals and Cookbook


Book Description

Apache Spark is one of the fastest growing technology in BigData computing world. It support multiple programming languages like Java, Scala, Python and R. Hence, many existing and new framework started to integrate Spark platform as well in their platform e.g. Hadoop, Cassandra, EMR etc. While creating Spark certification material HadoopExam technical team found that there is no proper material and book is available for the Spark SQL (version 2.x) which covers the concepts as well as use of various features and found difficulty in creating the material. Therefore, they decided to create full length book for Spark SQL and outcome of that is this book. In this book technical team try to cover both fundamental concepts of Spark SQL engine and many exercises approx. 35+ so that most of the programming features can be covered. There are approximately 35 exercises and total 15 chapters which covers the programming aspects of SparkSQL. All the exercises given in this book are written using Scala. However, concepts remain same even if you are using different programming language.




DataBricks® PySpark 2.x Certification Practice Questions


Book Description

This book contains the questions answers and some FAQ about the Databricks Spark Certification for version 2.x, which is the latest release from Apache Spark. In this book we will be having in total 75 practice questions. Almost all required question would have in detail explanation to the questions and answers, wherever required. Don’t consider this book as a guide, it is more of question and answer practice book. This book also give some references as well like how to prepare further to ensure that you clear the certification exam. This book will particularly focus on the Python version of the certification preparation material. Please note these are practice questions and not dumps, hence just memorizing the question and answers will not help in the real exam. You need to understand the concepts in detail as well as you should be able to solve the programming questions at the end in real worlds work you should be able to write code using PySpark whether you are Data Engineer, Data Analytics Engineer, Data Scientists or Programmer. Hence, take the opportunity to learn each question and also go through the explanation of the questions.




Apache Cassandra Certification Practice Material : 2019


Book Description

About Professional Certification of Apache Cassandra: Apache Cassandra is one of the most popular NoSQL Database currently being used by many of the organization, globally in every industry like Aviation, Finance, Retail, Social Networking etc. It proves that there is quite a huge demand for certified Cassandra professionals. Having certification make your selection in the company make much easier. This certification is conducted by the DataStax®, which has the Enterprise Version of the Apache Cassandra and Leader in providing support for the open source Apache Cassandra NoSQL database. Cassandra is one of the Unique NoSQL Database. So go for its certification, it will certainly help in - Getting the Job - Increase in your salary - Growth in your career. - Managing Tera Bytes of Data. - Learning Distributed Database - Using CQL (Cassandra Query Language) Cassandra Certification Information: - Number of questions: 60 Multiple Choice - Time allowed in minutes: 90 - Required passing score: 75% - Languages: English Exam Objectives: There are in total 5 sections and you will be asked total 60 questions in real exam. Please check each section below with regards to the exam objective 1. Apache Cassandra™ data modeling 2. Fundamentals of replication and consistency 3. The distributed and internal architecture of Apache Cassandra™ 4. Installation and configuration 5. Basic tooling




Spark: The Definitive Guide


Book Description

Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation




Learning Spark


Book Description

Data in all domains is getting bigger. How can you work with it efficiently? Recently updated for Spark 1.3, this book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. This edition includes new information on Spark SQL, Spark Streaming, setup, and Maven coordinates. Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You’ll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning. Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell Leverage Spark’s powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm Learn how to deploy interactive, batch, and streaming applications Connect to data sources including HDFS, Hive, JSON, and S3 Master advanced topics like data partitioning and shared variables




High Performance Spark


Book Description

Apache Spark is amazing when everything clicks. But if you haven’t seen the performance improvements you expected, or still don’t feel confident enough to use Spark in production, this practical book is for you. Authors Holden Karau and Rachel Warren demonstrate performance optimizations to help your Spark queries run faster and handle larger data sizes, while using fewer resources. Ideal for software engineers, data engineers, developers, and system administrators working with large-scale data applications, this book describes techniques that can reduce data infrastructure costs and developer hours. Not only will you gain a more comprehensive understanding of Spark, you’ll also learn how to make it sing. With this book, you’ll explore: How Spark SQL’s new interfaces improve performance over SQL’s RDD data structure The choice between data joins in Core Spark and Spark SQL Techniques for getting the most out of standard RDD transformations How to work around performance issues in Spark’s key/value pair paradigm Writing high-performance Spark code without Scala or the JVM How to test for functionality and performance when applying suggested improvements Using Spark MLlib and Spark ML machine learning libraries Spark’s Streaming components and external community packages




Beginning Apache Spark Using Azure Databricks


Book Description

Analyze vast amounts of data in record time using Apache Spark with Databricks in the Cloud. Learn the fundamentals, and more, of running analytics on large clusters in Azure and AWS, using Apache Spark with Databricks on top. Discover how to squeeze the most value out of your data at a mere fraction of what classical analytics solutions cost, while at the same time getting the results you need, incrementally faster. This book explains how the confluence of these pivotal technologies gives you enormous power, and cheaply, when it comes to huge datasets. You will begin by learning how cloud infrastructure makes it possible to scale your code to large amounts of processing units, without having to pay for the machinery in advance. From there you will learn how Apache Spark, an open source framework, can enable all those CPUs for data analytics use. Finally, you will see how services such as Databricks provide the power of Apache Spark, without you having to know anything about configuring hardware or software. By removing the need for expensive experts and hardware, your resources can instead be allocated to actually finding business value in the data. This book guides you through some advanced topics such as analytics in the cloud, data lakes, data ingestion, architecture, machine learning, and tools, including Apache Spark, Apache Hadoop, Apache Hive, Python, and SQL. Valuable exercises help reinforce what you have learned. What You Will Learn Discover the value of big data analytics that leverage the power of the cloudGet started with Databricks using SQL and Python in either Microsoft Azure or AWSUnderstand the underlying technology, and how the cloud and Apache Spark fit into the bigger picture See how these tools are used in the real world Run basic analytics, including machine learning, on billions of rows at a fraction of a cost or free Who This Book Is For Data engineers, data scientists, and cloud architects who want or need to run advanced analytics in the cloud. It is assumed that the reader has data experience, but perhaps minimal exposure to Apache Spark and Azure Databricks. The book is also recommended for people who want to get started in the analytics field, as it provides a strong foundation.




Mastering Spark with R


Book Description

If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions




Apache Spark 2.x Cookbook


Book Description

Over 70 recipes to help you use Apache Spark as your single big data computing platform and master its libraries About This Book This book contains recipes on how to use Apache Spark as a unified compute engine Cover how to connect various source systems to Apache Spark Covers various parts of machine learning including supervised/unsupervised learning & recommendation engines Who This Book Is For This book is for data engineers, data scientists, and those who want to implement Spark for real-time data processing. Anyone who is using Spark (or is planning to) will benefit from this book. The book assumes you have a basic knowledge of Scala as a programming language. What You Will Learn Install and configure Apache Spark with various cluster managers & on AWS Set up a development environment for Apache Spark including Databricks Cloud notebook Find out how to operate on data in Spark with schemas Get to grips with real-time streaming analytics using Spark Streaming & Structured Streaming Master supervised learning and unsupervised learning using MLlib Build a recommendation engine using MLlib Graph processing using GraphX and GraphFrames libraries Develop a set of common applications or project types, and solutions that solve complex big data problems In Detail While Apache Spark 1.x gained a lot of traction and adoption in the early years, Spark 2.x delivers notable improvements in the areas of API, schema awareness, Performance, Structured Streaming, and simplifying building blocks to build better, faster, smarter, and more accessible big data applications. This book uncovers all these features in the form of structured recipes to analyze and mature large and complex sets of data. Starting with installing and configuring Apache Spark with various cluster managers, you will learn to set up development environments. Further on, you will be introduced to working with RDDs, DataFrames and Datasets to operate on schema aware data, and real-time streaming with various sources such as Twitter Stream and Apache Kafka. You will also work through recipes on machine learning, including supervised learning, unsupervised learning & recommendation engines in Spark. Last but not least, the final few chapters delve deeper into the concepts of graph processing using GraphX, securing your implementations, cluster optimization, and troubleshooting. Style and approach This book is packed with intuitive recipes supported with line-by-line explanations to help you understand Spark 2.x's real-time processing capabilities and deploy scalable big data solutions. This is a valuable resource for data scientists and those working on large-scale data projects.




Recent Books