Specimen Handling, Preparation, and Treatments in Surface Characterization


Book Description

With the development in the 1960s of ultrahigh vacuum equipment and techniques and electron, X-ray, and ion beam techniques to determine the structure and composition of interfaces, activities in the field of surface science grew nearly exponentially. Today surface science impacts all major fields of study from physical to biological sciences, from physics to chemistry, and all engineering disciplines. The materials and phenomena characterized by surface science range from se- conductors, where the impact of surface science has been critical to progress, to metals and ceramics, where selected contributions have been important, to bio- terials, where contributions are just beginning to impact the field, to textiles, where the impact has been marginal. With such a range of fields and applications, questions about sample selection, preparation, treatment, and handling are difficult to cover completely in one review article or one chapter. Therefore, the editors of this book have assembled a range of experts with experience in the major fields impacted by surface characterization. It is the only book which treats the subject of sample handling, preparation, and treatment for surface characterization. It is full of tricks, cautions, and handy tips to make the laboratory scientist’s life easier. With respect to organization of the book, the topics range from discussion of vacuum to discussion of biological, organic, elemental or compound samples, to samples prepared ex situ or in situ to the vacuum, to deposition ofthin films. Generic considerations of sample preparation are also given.




Catalysis with Supported Size-selected Pt Clusters


Book Description

In his thesis, Florian Schweinberger investigates the influence of the precise size of catalytically active species on reactivity. In order to do this he carries out studies both in UHV and under ambient conditions for supported, size-selected Platium clusters (8-68 atoms). Schweinberger probed the electronic structure, adsorption properties and reactivity of two olefins on surfaces and Pt clusters in the submonolayer range. With adsorbed trichloroethene (TCE) a possible cluster-adsorbate induced change in the electronic structure, and for ethene a low-temperature, size-dependent self-/hydrogenation was observed.In a collaborative approach, Schweinberger and colleagues investigated Pt clusters under ambient pressure conditions. They characterised the clusters at at the local and integral level and tested for temperature stability. Experiments in gas phase ?-reactors and in liquid, as part of a hybrid photocatalytic system, revealed size-dependent reactivity.Overall this thesis is not only of interest for those who want to perform similar experiments but also provides superb scientific insights for researchers in the field.




Sample Preparation Techniques for Chemical Analysis


Book Description

Despite having powerful software, microchips, and solid-state detectors that enable analytical chemists to achieve fast, stable, and accurate signals from their instruments, sample preparation is the most important step in chemical analysis. Issues can arise at this step for various reasons, including a low concentration of analytes, incompatibility of the sample with the analytical instrument, and matrix interferences. This volume discusses the basics of sample preparation and examines modern techniques that can be used by both novice and expert analytical chemists. Chapters review microextraction, surface spectroscopy analysis, and techniques for particle, tissue, and cellular separation.




Characterization of Metals and Alloys


Book Description

A better understanding of the microstructure of metals and alloys has led to great advances in the performance and useful applications of these, the oldest of mankind's engineered materials. This book in the Materials Characterizations series focuses on the particular molecular and atomistic properties of metals insofar as how they affect the different techniques for measuring and analyzing internal structure, surface structure, and chemical/physical properties. It provides a vital connection between commonly used characterization techniques like Scanning Electron Microscopy and how such can be used in the various ways that metals are processed, machined, and used. Review of relevant mechanical and chemical properties of metals and how they affect characterization techniques Characterization techniques used for melting and casting, machining, and metallic thin films processes Concise summaries of major characterization technologies for metals and alloys, including Auger Electron Spectroscopy, Energy-Dispersive X-Ray Spectroscopy, Neutron Activation Analysis, Scanning Electron Microscopy, and Transmission Electron Spectroscopy




Chemical Abstracts Service Source Index


Book Description

A key source to journal and conference abbreviations in the sciences. Although it focuses on chemistry, other scientific and engineering disciplines are also well represented. In addition to the abbreviation and full title, each entry also contains publishing info, title changes, language and frequency of publication, and libraries owning that title. Over 130,000 entries representing more than 70,000 publications dating back to 1907 are included.




Auger- and X-Ray Photoelectron Spectroscopy in Materials Science


Book Description

To anyone who is interested in surface chemical analysis of materials on the nanometer scale, this book is prepared to give appropriate information. Based on typical application examples in materials science, a concise approach to all aspects of quantitative analysis of surfaces and thin films with AES and XPS is provided. Starting from basic principles which are step by step developed into practically useful equations, extensive guidance is given to graduate students as well as to experienced researchers. Key chapters are those on quantitative surface analysis and on quantitative depth profiling, including recent developments in topics such as surface excitation parameter and backscattering correction factor. Basic relations are derived for emission and excitation angle dependencies in the analysis of bulk material and of fractional nano-layer structures, and for both smooth and rough surfaces. It is shown how to optimize the analytical strategy, signal-to-noise ratio, certainty and detection limit. Worked examples for quantification of alloys and of layer structures in practical cases (e.g. contamination, evaporation, segregation and oxidation) are used to critically review different approaches to quantification with respect to average matrix correction factors and matrix relative sensitivity factors. State-of-the-art issues in quantitative, destructive and non-destructive depth profiling are discussed with emphasis on sputter depth profiling and on angle resolved XPS and AES. Taking into account preferential sputtering and electron backscattering corrections, an introduction to the mixing-roughness-information depth (MRI) model and its extensions is presented.




Forthcoming Books


Book Description




Handbook of Physical Vapor Deposition (PVD) Processing


Book Description

This book covers all aspects of physical vapor deposition (PVD) process technology from the characterizing and preparing the substrate material, through deposition processing and film characterization, to post-deposition processing. The emphasis of the book is on the aspects of the process flow that are critical to economical deposition of films that can meet the required performance specifications. The book covers subjects seldom treated in the literature: substrate characterization, adhesion, cleaning and the processing. The book also covers the widely discussed subjects of vacuum technology and the fundamentals of individual deposition processes. However, the author uniquely relates these topics to the practical issues that arise in PVD processing, such as contamination control and film growth effects, which are also rarely discussed in the literature. In bringing these subjects together in one book, the reader can understand the interrelationship between various aspects of the film deposition processing and the resulting film properties. The author draws upon his long experience with developing PVD processes and troubleshooting the processes in the manufacturing environment, to provide useful hints for not only avoiding problems, but also for solving problems when they arise. He uses actual experiences, called ""war stories"", to emphasize certain points. Special formatting of the text allows a reader who is already knowledgeable in the subject to scan through a section and find discussions that are of particular interest. The author has tried to make the subject index as useful as possible so that the reader can rapidly go to sections of particular interest. Extensive references allow the reader to pursue subjects in greater detail if desired. The book is intended to be both an introduction for those who are new to the field and a valuable resource to those already in the field. The discussion of transferring technology between R&D and manufacturing provided in Appendix 1, will be of special interest to the manager or engineer responsible for moving a PVD product and process from R&D into production. Appendix 2 has an extensive listing of periodical publications and professional societies that relate to PVD processing. The extensive Glossary of Terms and Acronyms provided in Appendix 3 will be of particular use to students and to those not fully conversant with the terminology of PVD processing or with the English language.