Spectral and Shape Analysis in Medical Imaging


Book Description

This book constitutes the refereed post-conference proceedings of the First International Workshop on Spectral and Shape Analysis in Medical Imaging, SeSAMI 2016, held in conjunction with MICCAI 2016, in Athens, Greece, in October 2016. The 10 submitted full papers presented in this volume were carefully reviewed. The papers reflect the following topics: spectral methods; longitudinal methods; and shape methods.




Spectral Geometry of Shapes


Book Description

Spectral Geometry of Shapes presents unique shape analysis approaches based on shape spectrum in differential geometry. It provides insights on how to develop geometry-based methods for 3D shape analysis. The book is an ideal learning resource for graduate students and researchers in computer science, computer engineering and applied mathematics who have an interest in 3D shape analysis, shape motion analysis, image analysis, medical image analysis, computer vision and computer graphics. Due to the rapid advancement of 3D acquisition technologies there has been a big increase in 3D shape data that requires a variety of shape analysis methods, hence the need for this comprehensive resource.




Shape in Medical Imaging


Book Description

This book constitutes the proceedings of the International Workshop on Shape in Medical Imaging, ShapeMI 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer Assistend Intervention, MICCAI 2020, in October 2020. The conference was planned to take place in Lima, Peru, but changed to a virtual format due to the COVID-19 pandemic. The 12 full papers included in this volume were carefully reviewed and selected from 18 submissions. They were organized in topical sections named: methods; learning; and applications.




Shape Analysis in Medical Image Analysis


Book Description

This book contains thirteen contributions from invited experts of international recognition addressing important issues in shape analysis in medical image analysis, including techniques for image segmentation, registration, modelling and classification and applications in biology, as well as in cardiac, brain, spine, chest, lung and clinical practice. This volume treats topics such as for example, anatomic and functional shape representation and matching; shape-based medical image segmentation; shape registration; statistical shape analysis; shape deformation; shape-based abnormity detection; shape tracking and longitudinal shape analysis; machine learning for shape modeling and analysis; shape-based computer-aided-diagnosis; shape-based medical navigation; benchmark and validation of shape representation, analysis and modeling algorithms. This work will be of interest to researchers, students and manufacturers in the fields of artificial intelligence, bioengineering, biomechanics, computational mechanics, computational vision, computer sciences, human motion, mathematics, medical imaging, medicine, pattern recognition and physics.




Medical Image Analysis


Book Description

Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing




Spectral Geometry of Shapes


Book Description

Spectral Geometry of Shapes presents unique shape analysis approaches based on shape spectrum in differential geometry. It provides insights on how to develop geometry-based methods for 3D shape analysis. The book is an ideal learning resource for graduate students and researchers in computer science, computer engineering and applied mathematics who have an interest in 3D shape analysis, shape motion analysis, image analysis, medical image analysis, computer vision and computer graphics. Due to the rapid advancement of 3D acquisition technologies there has been a big increase in 3D shape data that requires a variety of shape analysis methods, hence the need for this comprehensive resource. - Presents the latest advances in spectral geometric processing for 3D shape analysis applications, such as shape classification, shape matching, medical imaging, etc. - Provides intuitive links between fundamental geometric theories and real-world applications, thus bridging the gap between theory and practice - Describes new theoretical breakthroughs in applying spectral methods for non-isometric motion analysis - Gives insights for developing spectral geometry-based approaches for 3D shape analysis and deep learning of shape geometry




Shape in Medical Imaging


Book Description

This volume comprises the proceedings of the International Workshop, ShapeMI 2023, which took place alongside MICCAI 2023 on October 8, 2023, in Vancouver, British Columbia, Canada. The 23 selected full papers deal with all aspects of leading methods and applications for advanced shape analysis and geometric learning in medical imaging.




Shape in Medical Imaging


Book Description

This book constitutes the proceedings of the Workshop on Shape in Medical Imaging, ShapeMI 2018, held in conjunction with the 21st International Conference on Medical Image Computing, MICCAI 2018, in Granada, Spain, in September 2018. The 26 full papers and 2 short papers presented were carefully reviewed and selected for inclusion in this volume. The papers discuss novel approaches and applications in shape and geometry processing and their use in research and clinical studies and explore novel, cutting-edge theoretical methods and their usefulness for medical applications, e.g., from the fields of geometric learning or spectral shape analysis.




Medical Image Computing and Computer-Assisted Intervention – MICCAI 2007


Book Description

This title is part of a two-volume set that constitute the refereed proceedings of the 10th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2007. Coverage in this first volume includes diffusion tensor imaging and computing, cardiac imaging and robotics, image segmentation and classification, image guided intervention and robotics, innovative clinical and biological applications, brain atlas computing, and simulation of therapy.




Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2012


Book Description

The three-volume set LNCS 7510, 7511, and 7512 constitutes the refereed proceedings of the 15th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2012, held in Nice, France, in October 2012. Based on rigorous peer reviews, the program committee carefully selected 252 revised papers from 781 submissions for presentation in three volumes. The second volume includes 82 papers organized in topical sections on cardiovascular imaging: planning, intervention and simulation; image registration; neuroimage analysis; diffusion weighted imaging; image segmentation; computer-assisted interventions and robotics; and image registration: new methods and results.