Spectral Decomposition of a Covering of Gl (R)


Book Description

Let $F$ be a number field and ${\bf A}$ the ring of adeles over $F$. Suppose $\overline{G({\bf A})}$ is a metaplectic cover of $G({\bf A})=GL(r, {\bf A})$ which is given by the $n$-th Hilbert symbol on ${\bf A}$




Spectral Decomposition of a Covering of $GL(r)$: the Borel case


Book Description

Let $F$ be a number field and ${\bf A}$ the ring of adeles over $F$. Suppose $\overline{G({\bf A})}$ is a metaplectic cover of $G({\bf A})=GL(r, {\bf A})$ which is given by the $n$-th Hilbert symbol on ${\bf A}$




Equivariant Orthogonal Spectra and $S$-Modules


Book Description

The last few years have seen a revolution in our understanding of the foundations of stable homotopy theory. Many symmetric monoidal model categories of spectra whose homotopy categories are equivalent to the stable homotopy category are now known, whereas no such categories were known before 1993. The most well-known examples are the category of $S$-modules and the category of symmetric spectra. We focus on the category of orthogonal spectra, which enjoys some of the best features of $S$-modules and symmetric spectra and which is particularly well-suited to equivariant generalization. We first complete the nonequivariant theory by comparing orthogonal spectra to $S$-modules. We then develop the equivariant theory.For a compact Lie group $G$, we construct a symmetric monoidal model category of orthogonal $G$-spectra whose homotopy category is equivalent to the classical stable homotopy category of $G$-spectra. We also complete the theory of $S_G$-modules and compare the categories of orthogonal $G$-spectra and $S_G$-modules. A key feature is the analysis of change of universe, change of group, fixed point, and orbit functors in these two highly structured categories for the study of equivariant stable homotopy theory.




Abstract Band Method via Factorization, Positive and Band Extensions of Multivariable Almost Periodic Matrix Functions, and Spectral Estimation


Book Description

In this work, versions of an abstract scheme are developed, which are designed to provide a framework for solving a variety of extension problems. The abstract scheme is commonly known as the band method. The main feature of the new versions is that they express directly the conditions for existence of positive band extensions in terms of abstract factorizations (with certain additional properties). The results prove, amongst other things, that the band extension is continuous in an appropriate sense.




Lie Algebras Graded by the Root Systems BC$_r$, $r\geq 2$


Book Description

Introduction The $\mathfrak{g}$-module decomposition of a $\mathrm{BC}_r$-graded Lie algebra, $r\ge 3$ (excluding type $\mathrm{D}_3)$ Models for $\mathrm{BC}_r$-graded Lie algebras, $r\ge 3$ (excluding type $\mathrm{D}_3)$ The $\mathfrak{g}$-module decomposition of a $\mathrm{BC}_r$-graded Lie algebra with grading subalgebra of type $\mathrm{B}_2$, $\mathrm{C}_2$, $\mathrm{D}_2$, or $\mathrm{D}_3$ Central extensions, derivations and invariant forms Models of $\mathrm{BC}_r$-graded Lie algebras with grading subalgebra of type $\mathrm{B}_2$, $\mathrm{C}_2$, $\mathrm{D}_2$, or $\mathrm{D}_3$ Appendix: Peirce decompositions in structurable algebras References.




The Role of the Spectrum in the Cyclic Behavior of Composition Operators


Book Description

Introduction and preliminaries Linear fractional maps with an interior fixed point Non elliptic automorphisms The parabolic non automorphism Supercyclic linear fractional composition operators Endnotes Bibliography.




$\mathcal {R}$-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type


Book Description

The property of maximal $L_p$-regularity for parabolic evolution equations is investigated via the concept of $\mathcal R$-sectorial operators and operator-valued Fourier multipliers. As application, we consider the $L_q$-realization of an elliptic boundary value problem of order $2m$ with operator-valued coefficients subject to general boundary conditions. We show that there is maximal $L_p$-$L_q$-regularity for the solution of the associated Cauchy problem provided the top order coefficients are bounded and uniformly continuous.




Homotopy Theory of the Suspensions of the Projective Plane


Book Description

Investigates the homotopy theory of the suspensions of the real projective plane. This book computes the homotopy groups up to certain range. It also studies the decompositions of the self smashes and the loop spaces with some applications to the Stiefel manifolds.







Connectivity Properties of Group Actions on Non-Positively Curved Spaces


Book Description

Generalizing the Bieri-Neumann-Strebel-Renz Invariants, this Memoir presents the foundations of a theory of (not necessarily discrete) actions $\rho$ of a (suitable) group $G$ by isometries on a proper CAT(0) space $M$. The passage from groups $G$ to group actions $\rho$ implies the introduction of 'Sigma invariants' $\Sigmak(\rho)$ to replace the previous $\Sigmak(G)$ introduced by those authors. Their theory is now seen as a special case of what is studied here so that readers seeking a detailed treatment of their theory will find it included here as a special case. We define and study 'controlled $k$-connectedness $(CCk)$' of $\rho$, both over $M$ and over end points $e$ in the 'boundary at infinity' $\partial M$; $\Sigmak(\rho)$ is by definition the set of all $e$ over which the action is $(k-1)$-connected. A central theorem, the Boundary Criterion, says that $\Sigmak(\rho) = \partial M$ if and only if $\rho$ is $CC{k-1}$ over $M$.An Openness Theorem says that $CCk$ over $M$ is an open condition on the space of isometric actions $\rho$ of $G$ on $M$. Another Openness Theorem says that $\Sigmak(\rho)$ is an open subset of $\partial M$ with respect to the Tits metric topology. When $\rho(G)$ is a discrete group of isometries the property $CC{k-1}$ is equivalent to ker$(\rho)$ having the topological finiteness property type '$F_k$'. More generally, if the orbits of the action are discrete, $CC{k-1}$ is equivalent to the point-stabilizers having type $F_k$. In particular, for $k=2$ we are characterizing finite presentability of kernels and stabilizers. Examples discussed include: locally rigid actions, translation actions on vector spaces (especially those by metabelian groups