Spectral Methods in Surface Superconductivity


Book Description

This book examines in detail the nonlinear Ginzburg–Landau functional, the model most commonly used in the study of superconductivity. Specifically covered are cases in the presence of a strong magnetic field and with a sufficiently large Ginzburg–Landau parameter kappa. Spectral Methods in Surface Superconductivity is intended for students and researchers with a graduate-level understanding of functional analysis, spectral theory, and the analysis of partial differential equations. The book also includes an overview of all nonstandard material as well as important semi-classical techniques in spectral theory that are involved in the nonlinear study of superconductivity.




Spectral Theory and Geometric Analysis


Book Description

The papers in this volume cover important topics in spectral theory and geometric analysis such as resolutions of smooth group actions, spectral asymptotics, solutions of the Ginzburg-Landau equation, scattering theory, Riemann surfaces of infinite genus and tropical mathematics.




Spectral Theory and Mathematical Physics


Book Description

The present volume contains the Proceedings of the International Conference on Spectral Theory and Mathematical Physics held in Santiago de Chile in November 2014. Main topics are: Ergodic Quantum Hamiltonians, Magnetic Schrödinger Operators, Quantum Field Theory, Quantum Integrable Systems, Scattering Theory, Semiclassical and Microlocal Analysis, Spectral Shift Function and Quantum Resonances. The book presents survey articles as well as original research papers on these topics. It will be of interest to researchers and graduate students in Mathematics and Mathematical Physics.




Sixteenth International Congress on Mathematical Physics


Book Description

The International Congress on Mathematical Physics is the flagship conference in this exciting field. Convening every three years, it gives a survey on the progress achieved in all branches of mathematical physics. It also provides a superb platform to discuss challenges and new ideas. The present volume collects material from the XVIth ICMP which was held in Prague, August 2009, and features most of the plenary lectures and invited lectures in topical sessions as well as information on other parts of the congress program. This volume provides a broad coverage of the field of mathematical physics, from dominantly mathematical subjects to particle physics, condensed matter, and application of mathematical physics methods in various areas such as astrophysics and ecology, amongst others.




Geometric Methods in Physics


Book Description

The Białowieża Workshops on Geometric Methods in Physics, which are hosted in the unique setting of the Białowieża natural forest in Poland, are among the most important meetings in the field. Every year some 80 to 100 participants from both the mathematics and physics world join to discuss new developments and to exchange ideas. The current volume was produced on the occasion of the 32nd meeting in 2013. It is now becoming a tradition that the Workshop is followed by a School on Geometry and Physics, which consists of advanced lectures for graduate students and young researchers. Selected speakers at the 2013 Workshop were asked to contribute to this book, and their work was supplemented by additional review articles. The selection shows that, despite its now long tradition, the workshop remains at the cutting edge of research. The 2013 Workshop also celebrated the 75th birthday of Daniel Sternheimer, and on this occasion the discussion mainly focused on his contributions to mathematical physics such as deformation quantization, Poisson geometry, symplectic geometry and non-commutative differential geometry.




Mathematical Results In Quantum Physics - Proceedings Of The Qmath11 (With Dvd-rom)


Book Description

The volume collects papers from talks given at QMath11 — Mathematical Results in Quantum Physics, which was held in Hradec Králové, September 2010. These papers bring new and interesting results in quantum mechanics and information, quantum field theory, random systems, quantum chaos, as well as in the physics of social systems. Part of the contribution is dedicated to Ari Laptev on the occasion of his 60th birthday, in recognition of his mathematical results and his service to the community. The QMath conference series has played an important role in mathematical physics for more than two decades, typically attracting many of the best results achieved in the last three-year period, and the meeting in Hradec Králové was no exception.




Applied Mathematics in Tunisia


Book Description

This contributed volume presents some recent theoretical advances in mathematics and its applications in various areas of science and technology. Written by internationally recognized scientists and researchers, the chapters in this book are based on talks given at the International Conference on Advances in Applied Mathematics (ICAAM), which took place December 16-19, 2013, in Hammamet, Tunisia. Topics discussed at the conference included spectral theory, operator theory, optimization, numerical analysis, ordinary and partial differential equations, dynamical systems, control theory, probability, and statistics. These proceedings aim to foster and develop further growth in all areas of applied mathematics.




Quantum Mathematics I


Book Description

This book is the first volume that provides an unique overview of the most recent and relevant contributions in the field of mathematical physics with a focus on the mathematical features of quantum mechanics. It is a collection of review papers together with brand new works related to the activities of the INdAM Intensive Period "INdAM Quantum Meetings (IQM22)", which took place at the Politecnico di Milano in Spring 2022 at Politecnico di Milano. The range of topics covered by the book is wide, going ranging from many-body quantum mechanics to semiclassical analysis, quantum field theory, Schrödinger and Dirac operators and open quantum systems




High Tc Superconductors


Book Description

A wide range of progress in materials development [single crystals, ceramics, thin films, wire and tapes] is reported in the 169 papers in this volume. The main focus of the papers is in attaining a better understanding of the relationship between microstructure and electrical properties. Invited papers cover topics such as the effects of substitution and doping; multilayers; nanostructure characterisation; electric field effects in High Tc Superconductors [HTS]; surface stability; critical currents; flux pinning and magnetooptic imaging of flux patterns; effects of irradiation induced defects; properties and preparation of materials; microwave properties and electronic devices. A clearly broadened basis for understanding processes and mechanisms in [HTS] is portrayed. Appreciable progress has been achieved in the reproducible manufacturing of high quality materials supported by very efficient methods in microstructural analysis. This essential improvement is reflected in the increased number of practical devices encouraging the use of HTS in applications for electronics and power engineering, all of which are reviewed in depth in this work.




Mathematical and Computational Modeling


Book Description

Mathematical and Computational Modeling Illustrates the application of mathematical and computational modeling in a variety of disciplines With an emphasis on the interdisciplinary nature of mathematical and computational modeling, Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts features chapters written by well-known, international experts in these fields and presents readers with a host of state-of-theart achievements in the development of mathematical modeling and computational experiment methodology. The book is a valuable guide to the methods, ideas, and tools of applied and computational mathematics as they apply to other disciplines such as the natural and social sciences, engineering, and technology. The book also features: Rigorous mathematical procedures and applications as the driving force behind mathematical innovation and discovery Numerous examples from a wide range of disciplines to emphasize the multidisciplinary application and universality of applied mathematics and mathematical modeling Original results on both fundamental theoretical and applied developments in diverse areas of human knowledge Discussions that promote interdisciplinary interactions between mathematicians, scientists, and engineers Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts is an ideal resource for professionals in various areas of mathematical and statistical sciences, modeling and simulation, physics, computer science, engineering, biology and chemistry, and industrial and computational engineering. The book also serves as an excellent textbook for graduate courses in mathematical modeling, applied mathematics, numerical methods, operations research, and optimization.