Spectral Theory, Function Spaces and Inequalities


Book Description

This is a collection of contributed papers which focus on recent results in areas of differential equations, function spaces, operator theory and interpolation theory. In particular, it covers current work on measures of non-compactness and real interpolation, sharp Hardy-Littlewood-Sobolev inequalites, the HELP inequality, error estimates and spectral theory of elliptic operators, pseudo differential operators with discontinuous symbols, variable exponent spaces and entropy numbers. These papers contribute to areas of analysis which have been and continue to be heavily influenced by the leading British analysts David Edmunds and Des Evans. This book marks their respective 80th and 70th birthdays.




Functional Inequalities Markov Semigroups and Spectral Theory


Book Description

In this book, the functional inequalities are introduced to describe:(i) the spectrum of the generator: the essential and discrete spectrums, high order eigenvalues, the principle eigenvalue, and the spectral gap;(ii) the semigroup properties: the uniform intergrability, the compactness, the convergence rate, and the existence of density;(iii) the reference measure and the intrinsic metric: the concentration, the isoperimetic inequality, and the transportation cost inequality.




Introduction to Spectral Theory


Book Description

The intention of this book is to introduce students to active areas of research in mathematical physics in a rather direct way minimizing the use of abstract mathematics. The main features are geometric methods in spectral analysis, exponential decay of eigenfunctions, semi-classical analysis of bound state problems, and semi-classical analysis of resonance. A new geometric point of view along with new techniques are brought out in this book which have both been discovered within the past decade. This book is designed to be used as a textbook, unlike the competitors which are either too fundamental in their approach or are too abstract in nature to be considered as texts. The authors' text fills a gap in the marketplace.




Spectral Theory, Function Spaces and Inequalities


Book Description

This is a collection of contributed papers which focus on recent results in areas of differential equations, function spaces, operator theory and interpolation theory. In particular, it covers current work on measures of non-compactness and real interpolation, sharp Hardy-Littlewood-Sobolev inequalites, the HELP inequality, error estimates and spectral theory of elliptic operators, pseudo differential operators with discontinuous symbols, variable exponent spaces and entropy numbers. These papers contribute to areas of analysis which have been and continue to be heavily influenced by the leading British analysts David Edmunds and Des Evans. This book marks their respective 80th and 70th birthdays.




Functional Analysis


Book Description

In an elegant and concise fashion, this book presents the concepts of functional analysis required by students of mathematics and physics. It begins with the basics of normed linear spaces and quickly proceeds to concentrate on Hilbert spaces, specifically the spectral theorem for bounded as well as unbounded operators in separable Hilbert spaces. While the first two chapters are devoted to basic propositions concerning normed vector spaces and Hilbert spaces, the third chapter treats advanced topics which are perhaps not standard in a first course on functional analysis. It begins with the Gelfand theory of commutative Banach algebras, and proceeds to the Gelfand-Naimark theorem on commutative C*-algebras. A discussion of representations of C*-algebras follows, and the final section of this chapter is devoted to the Hahn-Hellinger classification of separable representations of commutative C*-algebras. After this detour into operator algebras, the fourth chapter reverts to more standard operator theory in Hilbert space, dwelling on topics such as the spectral theorem for normal operators, the polar decomposition theorem, and the Fredholm theory for compact operators. A brief introduction to the theory of unbounded operators on Hilbert space is given in the fifth and final chapter. There is a voluminous appendix whose purpose is to fill in possible gaps in the reader's background in various areas such as linear algebra, topology, set theory and measure theory. The book is interspersed with many exercises, and hints are provided for the solutions to the more challenging of these.




Theory of Besov Spaces


Book Description

This is a self-contained textbook of the theory of Besov spaces and Triebel–Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential operators, the generator of semi-group and spaces on domains, and the Kato problem. Various function spaces are introduced to overcome the shortcomings of Besov spaces and Triebel–Lizorkin spaces as well. The only prior knowledge required of readers is familiarity with integration theory and some elementary functional analysis.Illustrations are included to show the complicated way in which spaces are defined. Owing to that complexity, many definitions are required. The necessary terminology is provided at the outset, and the theory of distributions, L^p spaces, the Hardy–Littlewood maximal operator, and the singular integral operators are called upon. One of the highlights is that the proof of the Sobolev embedding theorem is extremely simple. There are two types for each function space: a homogeneous one and an inhomogeneous one. The theory of function spaces, which readers usually learn in a standard course, can be readily applied to the inhomogeneous one. However, that theory is not sufficient for a homogeneous space; it needs to be reinforced with some knowledge of the theory of distributions. This topic, however subtle, is also covered within this volume. Additionally, related function spaces—Hardy spaces, bounded mean oscillation spaces, and Hölder continuous spaces—are defined and discussed, and it is shown that they are special cases of Besov spaces and Triebel–Lizorkin spaces.




Function Spaces and Partial Differential Equations


Book Description

This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour. The strength of the book primarily lies in its clear and detailed explanations, scope and coverage, highlighting and presenting deep and profound inter-connections between different related and seemingly unrelated disciplines within classical and modern mathematics and above all the extensive collection of examples, worked-out and hinted exercises. There are well over 700 exercises of varying level leading the reader from the basics to the most advanced levels and frontiers of research. The book can be used either for independent study or for a year-long graduate level course. In fact it has its origin in a year-long graduate course taught by the author in Oxford in 2004-5 and various parts of it in other institutions later on. A good number of distinguished researchers and faculty in mathematics worldwide have started their research career from the course that formed the basis for this book.




Operator Theory in Function Spaces


Book Description

This book covers Toeplitz operators, Hankel operators, and composition operators on both the Bergman space and the Hardy space. The setting is the unit disk and the main emphasis is on size estimates of these operators: boundedness, compactness, and membership in the Schatten classes. Most results concern the relationship between operator-theoretic properties of these operators and function-theoretic properties of the inducing symbols. Thus a good portion of the book is devoted to the study of analytic function spaces such as the Bloch space, Besov spaces, and BMOA, whose elements are to be used as symbols to induce the operators we study. The book is intended for both research mathematicians and graduate students in complex analysis and operator theory. The prerequisites are minimal; a graduate course in each of real analysis, complex analysis, and functional analysis should sufficiently prepare the reader for the book. Exercises and bibliographical notes are provided at the end of each chapter. These notes will point the reader to additional results and problems. Kehe Zhu is a professor of mathematics at the State University of New York at Albany. His previous books include Theory of Bergman Spaces (Springer, 2000, with H. Hedenmalm and B. Korenblum) and Spaces of Holomorphic Functions in the Unit Ball (Springer, 2005). His current research interests are holomorphic function spaces and operators acting on them.




Schrödinger Operators: Eigenvalues and Lieb–Thirring Inequalities


Book Description

The analysis of eigenvalues of Laplace and Schrödinger operators is an important and classical topic in mathematical physics with many applications. This book presents a thorough introduction to the area, suitable for masters and graduate students, and includes an ample amount of background material on the spectral theory of linear operators in Hilbert spaces and on Sobolev space theory. Of particular interest is a family of inequalities by Lieb and Thirring on eigenvalues of Schrödinger operators, which they used in their proof of stability of matter. The final part of this book is devoted to the active research on sharp constants in these inequalities and contains state-of-the-art results, serving as a reference for experts and as a starting point for further research.




An Introduction to Spectral Theory


Book Description

A brief and accessible introduction to the spectral theory of linear second order elliptic differential operators. By introducing vital topics of abstract functional analysis where necessary, and using clear and simple proofs, the book develops an elegant presentation of the theory while integrating applications of basic real world problems involving the Laplacian. Suitable for use as a self-contained introduction for beginners or as a one-semester student text; contains some 25 examples and 60 exercises, most with detailed hints.