Split Hopkinson (Kolsky) Bar


Book Description

The authors systematically describe the general principles of Kolsky bars, or split Hopkinson bars, which are widely used for obtaining dynamic material properties. Modifications are introduced for obtaining reliable data. Specific experiment design guidelines are provided to subject the specimen to desired testing conditions. Detailed Kolsky-bar examples are given for different classes of materials (brittle, ductile, soft, etc) and for different loading conditions (tension, torsion, triaxial, high/low temperatures, intermediate strain rate, etc). The Kolsky bars used for dynamic structural characterization are briefly introduced. A collection of dynamic properties of various materials under various testing conditions is included which may serve as a reference database. This book assists both beginners and experienced professionals in characterizing high-rate material response with high quality and consistency. Readers who may benefit from this work include university students, instructors, R & D professionals, and scholars/engineers in solid mechanics, aerospace, civil and mechanical engineering, as well as materials science and engineering.




The Kolsky-Hopkinson Bar Machine


Book Description

In this book, leading scientists share their vision on the Kolsky-Hopkinson bar technique, which is a well-established experimental technique widely used to characterize materials and structures under dynamic, impact and explosion loads. Indeed, the Kolsky-Hopkinson bar machine is not a simple experimental device. It is rather a philosophical approach to solve the problem of measuring impact events. The split Hopkinson pressure bar conventional device is mainly limited to test homogeneous ductile non-soft materials under uni-axial compression. Extending the use of this device to more versatile applications faces several challenges such as controlling the stress state within the specimen and mastering the measurement of forces and velocities at the specimen-bar interfaces and then the material properties. Thus, the topics discussed in this book mainly focused on the loading and processing parts.




Stress Waves in Solids


Book Description

The most readable survey of the theoretical core of current knowledge available. The author gives a concise account of the classical theory necessary to an understanding of the subject and considers how this theory has been extended to solids.




Challenges in Mechanics of Time Dependent Materials, Volume 2


Book Description

Challenges in Mechanics of Time-Dependent Materials, Volume 2 of the Proceedings of the 2020 SEM Annual Conference& Exposition on Experimental and Applied Mechanics, the second volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental Mechanics, including papers in the following general technical research areas: Characterization Across Length Scales Extreme Environments & Environmental Effects Soft Materials Damage, fatigue and Fracture Inhomogeneities & Interfaces Viscoelasticity Research in Progress




Dynamics of Materials


Book Description

Dynamics of Materials: Experiments, Models and Applications addresses the basic laws of high velocity flow/deformation and dynamic failure of materials under dynamic loading. The book comprehensively covers different perspectives on volumetric law, including its macro-thermodynamic basis, solid physics basis, related dynamic experimental study, distortional law, including the rate-dependent macro-distortional law reflecting strain-rate effect, its micro-mechanism based on dislocation dynamics, and dynamic experimental research based on the stress wave theory. The final section covers dynamic failure in relation to dynamic damage evolution, including the unloading failure of a crack-free body, dynamics of cracks under high strain-rate, and more. - Covers models for applications, along with the fundamentals of the mechanisms behind the models - Tackles the difficult interdisciplinary nature of the subject, combining macroscopic continuum mechanics with thermodynamics and macro-mechanics expression with micro-physical mechanisms - Provides a review of the latest experimental methods for the equation of state for solids under high pressure and the distortional law under high strain-rates of materials




Constitutive Relations under Impact Loadings


Book Description

The book describes behavior of materials (ductile, brittle and composites) under impact loadings and high strain rates. The three aspects: experimental, theoretical and numerical are in the focus of interest. Hopkinson bars are mainly used as experimental devices to describe dynamic behavior of materials. The precise description of experimental techniques and interpretation of wave interaction are carefully discussed. Theoretical background refers to rate dependent thermo viscoplastic formulation. This includes the discussion of well posedness of initial boundary value problems and the solution of the system of governing equations using numerical methods. Explicit time integration is used in computations to solve dynamic problems. In addition, many applications in aeronautic and automotive industries are exposed.




The Automotive Body


Book Description

“The Automotive Body” consists of two volumes. The first volume produces the needful cultural background on the body; it describes the body and its components in use on most kinds of cars and industrial vehicles: the quantity of drawings that are presented allows the reader to familiarize with the design features and to understand functions, design motivations and fabrication feasibility, in view of the existing production processes. The second volume addresses the body system engineer and has the objective to lead him to the specification definition used to finalize detail design and production by the car manufacturer or the supply chain. The processing of these specifications, made by mathematical models of different complexity, starts always from the presentations of the needs of the customer using the vehicle and from the large number of rules imposed by laws and customs. The two volumes are completed by references, list of symbols adopted and subjects index. These two books about the vehicle body may be added to those about the chassis and are part of a series sponsored by ATA (the Italian automotive engineers association) on the subject of automotive engineering; they follow the first book, published in 2005 in Italian only, about automotive transmission. They cover automotive engineering from every aspect and are the result of a five-year collaboration between the Polytechnical University of Turin and the University of Naples on automotive engineering.




Compressive Strength of Concrete


Book Description

Concrete made using mineral cements, the raw materials which on earth are practically endless, is known as one of the oldest building materials and during the last decades of the twentieth century has become a dominant building material for general use. At the same time, the requirements of the quality of concrete and its performance properties, in particular compressive strength, durability, economical efficiency, and low negative impact of its manufacture on the environment have not yet been completely met. Bearing these requirements in mind, researchers and engineers worldwide are working on how to satisfy these requirements. This book has been written by researchers and experts in the field and provides the state of the art on recent progress achieved on the properties of concrete, including concrete in which industrial by-products are utilized. The book is dedicated to graduate students, researchers, and practicing engineers in related fields.




Springer Handbook of Experimental Solid Mechanics


Book Description

The Springer Handbook of Experimental Solid Mechanics documents both the traditional techniques as well as the new methods for experimental studies of materials, components, and structures. The emergence of new materials and new disciplines, together with the escalating use of on- and off-line computers for rapid data processing and the combined use of experimental and numerical techniques have greatly expanded the capabilities of experimental mechanics. New exciting topics are included on biological materials, MEMS and NEMS, nanoindentation, digital photomechanics, photoacoustic characterization, and atomic force microscopy in experimental solid mechanics. Presenting complete instructions to various areas of experimental solid mechanics, guidance to detailed expositions in important references, and a description of state-of-the-art applications in important technical areas, this thoroughly revised and updated edition is an excellent reference to a widespread academic, industrial, and professional engineering audience.




Modern Manufacturing Processes


Book Description

Provides an in-depth understanding of the fundamentals of a wide range of state-of-the-art materials manufacturing processes Modern manufacturing is at the core of industrial production from base materials to semi-finished goods and final products. Over the last decade, a variety of innovative methods have been developed that allow for manufacturing processes that are more versatile, less energy-consuming, and more environmentally friendly. This book provides readers with everything they need to know about the many manufacturing processes of today. Presented in three parts, Modern Manufacturing Processes starts by covering advanced manufacturing forming processes such as sheet forming, powder forming, and injection molding. The second part deals with thermal and energy-assisted manufacturing processes, including warm and hot hydrostamping. It also covers high speed forming (electromagnetic, electrohydraulic, and explosive forming). The third part reviews advanced material removal process like advanced grinding, electro-discharge machining, micro milling, and laser machining. It also looks at high speed and hard machining and examines advances in material modeling for manufacturing analysis and simulation. Offers a comprehensive overview of advanced materials manufacturing processes Provides practice-oriented information to help readers find the right manufacturing methods for the intended applications Highly relevant for material scientists and engineers in industry Modern Manufacturing Processes is an ideal book for practitioners and researchers in materials and mechanical engineering.