Advanced Research in Diesel Fuel Sprays Using X-rays From The Advanced Photon Source


Book Description

The fuel distribution and degree of atomization in the combustion chamber is a primary factor in the formation of emissions in diesel engines. A number of diagnostics to study sprays have been developed over the last twenty years; these are primarily based on visible light measurement techniques. However, visible light scatters strongly from fuel droplets surrounding the spray, which prevents penetration of the light. This has made quantitative measurements of the spray core very difficult, particularly in the relatively dense near- nozzle region [1-3]. For this reason we developed the x-ray technique to study the properties of fuel sprays in a quantitative way [4]. The x-ray technique is not limited by scattering, which allows it to be used to make quantitative measurements of the fuel distribution. These measurements are particularly effective in the region near the nozzle where other techniques fail. This technique has led to a number of new insights into the structure of fuel sprays, including the discovery and quantitative measurement of shock waves generated under some conditions by high-pressure diesel sprays [5]. We also performed the first-ever quantitative measurements of the time-resolved mass distribution in the near-nozzle region, which demonstrated that the spray is atomized only a few nozzle diameters from the orifice [6]. Our recent work has focused on efforts to make measurements under pressurized ambient conditions. We have recently completed a series of measurements at pressures up to 5 bar and are looking at the effect of ambient pressure on the structure of the spray. The enclosed figure shows the mass distributions measured for 1,2, and 5 bar ambient pressures. As expected, the penetration decreases as the pressure increases. This leads to changes in the measured mass distribution, including an increase in the density at the leading edge of the spray. We have also observed a narrowing in the cone angle of the spray core as the pressure increases. This is counter to visible light spray measurements, and current work is underway in an effort to understand this effect.




Schlieren and Shadowgraph Techniques


Book Description

Schlieren and shadowgraph techniques are basic and valuable tools in various scientific and engineering disciplines. They allow us to see the invisible: the optical inhomogeneities in transparent media like air, water, and glass that otherwise cause only ghostly distortions of our normal vision. These techniques are discussed briefly in many books and papers, but there is no up-to-date complete treatment of the subject before now. The book is intended as a practical guide for those who want to use these methods, as well as a resource for a broad range of disciplines where scientific visualization is important. The colorful 400-year history of these methods is covered in an extensive introductory chapter accessible to all readers.




The Role of Porous Media in Homogenizationof Diesel Fuel Spray Combustion


Book Description

Combustion homogenization of a fuel spray utilizing porous media (PM) has only recently been proposed and can be regarded as an untouched area of research. In this PhD program, the fundamental role of porous ceramic media on homogenization process of high pressure diesel fuel spray will be evaluated in diesel engine-like condition. In the study of high pressure diesel fuel spray combustion in presence of porous media, two main questions can be posed; what is the effect of porous media on fuel and air mixing process? How can porous media homogenize the diesel fuel spray combustion process? To answer these questions, cold (non-evaporating spray) and hot (combusting spray) experiments were conducted in a constant-volume chamber. Through the application of ultra-high speed imaging (UHSI) technique for cold flow experiment and developed image processing techniques, new insight into the transient nature of the fuel spray in different phases of spray interaction with a porous medium was gained. Besides developing a code for investigating the macroscopic characteristic parameters of the spray, a code was also developed to process the images for evaluating the probability density function (PDF) of the light intensity. Through PDF analysis, a discernible improvement of multijet dispersion and fuel atomization at higher chamber pressures in the last phase of spray interaction with the porous medium was achieved, irrespective of the injection pressure. This was interpreted as having a higher chance of uniform fuel distribution and a well homogenized mixture preparation for the combustion process, the first requirement for combustion homogenization, in both conventional as well as new diesel engine combustion concepts such as low temperature combustion (LTC). The combustion experiments were then conducted to shed light on the combustion characteristics of diesel spray in the presence of a porous medium with specific emphasis on combustion visualization and heat release analysis of the burning spray. Combustion imaging results showed the validity of the previous hypothesis gained from PDF analysis of cold flow results by showing the rapid development of homogenous combustion in the last phase of fuel interaction with the PM. Similar to the results of LTC combustion with retarded injection timing, a longer ignition delay, with a flatter and wider heat release rate pattern, compared to conventional diesel combustion, was observed in this study indicating the potential of PM assisted combustion in simultaneous reductions in soot and NOx emissions. Although more extensive experimentation will be required to determine performance over a wider range of conditions, these results suggest that porous media could be used to promote a distributed fuel air mixture resulting in slower, but more homogeneous heat release within the cylinder of an engine. The thesis provides detailed information for the experimental methodology developed in the Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC) at Monash University.




AN EXPERIMENTAL AND COMPUTATIONAL STUDY OF FUEL SPRAY INTERACTION


Book Description

Abstract : An efficient spray injection results in better vaporization and air-fuel mixing, leading to combustion stability and reduction of emissions in the internal combustion (IC) engines. The impingement of liquid fuels on chamber wall or piston surface in IC engines is a common phenomenon and fuel film formed in the spray-piston or cylinder wall impingement plays a critical role in engine performance and emissions. Therefore, the study of the spray impingement on the chamber wall or position surface is necessary. To understand the spray-wall interaction, a single droplet impingement on a solid surface with different conditions was first examined. The droplet-wall interaction outcomes, in particular focusing on the splashing criteria, were inspected and post-impingement characterizations including spreading factor, height ratio, contact line velocity, and dynamic contact angle was further analyzed based on the experimental data. The non-evaporation volume of fluid (VOF) model based on Eulerian approach was used to characterize single droplet impinging on the wall and provide a better understanding of the dynamic impact process. In addition, the study of droplet-to-droplet collision and multi-droplet impingement on a solid surface are performed, which is essential to aid in the spray-wall impingement investigation. As well, due to the evaporation drawing more attention during the engine combustion process, an evaporation VOF sub-model was developed and applied to multi-droplet impingement on a hot surface to qualitatively and quantitatively analyze the vaporizing process as droplets impacting onto the hot surface. After that, the non-vaporizing and vaporizing spray characteristics of spray-wall impingement at various operating conditions relevant to diesel engines were undertaken, with spray characterized using schlieren and Mie scattering diagnostics, as well as Refractive Index Matching (RIM) technique. Free and impinged spray structures and deposited wall-film formation and evaporation were qualitatively analyzed, spray properties and wall-film properties were quantified, and surface temperature and heat flux were measured. An Eulerian-Lagrangian modeling approach was employed to characterize the spray-wall interactions by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation. The local spray characteristics in the vicinity of the wall and the local spray morphology near the impingement location were studied. Furthermore, multiple spray-to-spray collision derived from droplet-to-droplet collision, considering as one of the advanced injection strategies to enhance the engine performance, was studied at various gasoline engine conditions to explore the effect of colliding spray on spray related phenomena like atomization, vaporization, and mixing. Spray characteristics were obtained by the schlieren diagnostics and the experimental validated Computational Fluid Dynamic (CFD) simulations were based on Eulerian-Lagrangian approach to understand the mechanism behind the collisions of sprays and characterize the different types of multiple spray-to-spray collision. In summary, on the strength of the study of droplet-wall impingement and droplet-to-droplet collision at non-evaporation and evaporation states, the main objective of this dissertation is to enhance the understanding of spray-wall impingement and multiple spray-to-spray collision under diesel or gasoline engine conditions from both experiments and CFD simulations, therefore providing feedbacks to the ultimate task in future development and application of a more reliable and effective fuel injection system.




Simulations and Optical Diagnostics for Internal Combustion Engines


Book Description

This book focuses on combustion simulations and optical diagnostics techniques, which are currently used in internal combustion engines. The book covers a variety of simulation techniques, including in-cylinder combustion, numerical investigations of fuel spray, and effects of different fuels and engine technologies. The book includes chapters focused on alternative fuels such as DEE, biomass, alcohols, etc. It provides valuable information about alternative fuel utilization in IC engines. Use of combustion simulations and optical techniques in advanced techniques such as microwave-assisted plasma ignition, laser ignition, etc. are few other important aspects of this book. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike.