AI and Big Data on IBM Power Systems Servers


Book Description

As big data becomes more ubiquitous, businesses are wondering how they can best leverage it to gain insight into their most important business questions. Using machine learning (ML) and deep learning (DL) in big data environments can identify historical patterns and build artificial intelligence (AI) models that can help businesses to improve customer experience, add services and offerings, identify new revenue streams or lines of business (LOBs), and optimize business or manufacturing operations. The power of AI for predictive analytics is being harnessed across all industries, so it is important that businesses familiarize themselves with all of the tools and techniques that are available for integration with their data lake environments. In this IBM® Redbooks® publication, we cover the best practices for deploying and integrating some of the best AI solutions on the market, including: IBM Watson Machine Learning Accelerator (see note for product naming) IBM Watson Studio Local IBM Power SystemsTM IBM SpectrumTM Scale IBM Data Science Experience (IBM DSX) IBM Elastic StorageTM Server Hortonworks Data Platform (HDP) Hortonworks DataFlow (HDF) H2O Driverless AI We map out all the integrations that are possible with our different AI solutions and how they can integrate with your existing or new data lake. We also walk you through some of our client use cases and show you how some of the industry leaders are using Hortonworks, IBM PowerAI, and IBM Watson Studio Local to drive decision making. We also advise you on your deployment options, when to use a GPU, and why you should use the IBM Elastic Storage Server (IBM ESS) to improve storage management. Lastly, we describe how to integrate IBM Watson Machine Learning Accelerator and Hortonworks with or without IBM Watson Studio Local, how to access real-time data, and security. Note: IBM Watson Machine Learning Accelerator is the new product name for IBM PowerAI Enterprise. Note: Hortonworks merged with Cloudera in January 2019. The new company is called Cloudera. References to Hortonworks as a business entity in this publication are now referring to the merged company. Product names beginning with Hortonworks continue to be marketed and sold under their original names.




Learning Statistics with R


Book Description

"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com




Systems of Insight for Digital Transformation: Using IBM Operational Decision Manager Advanced and Predictive Analytics


Book Description

Systems of record (SORs) are engines that generates value for your business. Systems of engagement (SOE) are always evolving and generating new customer-centric experiences and new opportunities to capitalize on the value in the systems of record. The highest value is gained when systems of record and systems of engagement are brought together to deliver insight. Systems of insight (SOI) monitor and analyze what is going on with various behaviors in the systems of engagement and information being stored or transacted in the systems of record. SOIs seek new opportunities, risks, and operational behavior that needs to be reported or have action taken to optimize business outcomes. Systems of insight are at the core of the Digital Experience, which tries to derive insights from the enormous amount of data generated by automated processes and customer interactions. Systems of Insight can also provide the ability to apply analytics and rules to real-time data as it flows within, throughout, and beyond the enterprise (applications, databases, mobile, social, Internet of Things) to gain the wanted insight. Deriving this insight is a key step toward being able to make the best decisions and take the most appropriate actions. Examples of such actions are to improve the number of satisfied clients, identify clients at risk of leaving and incentivize them to stay loyal, identify patterns of risk or fraudulent behavior and take action to minimize it as early as possible, and detect patterns of behavior in operational systems and transportation that lead to failures, delays, and maintenance and take early action to minimize risks and costs. IBM® Operational Decision Manager is a decision management platform that provides capabilities that support both event-driven insight patterns, and business-rule-driven scenarios. It also can easily be used in combination with other IBM Analytics solutions, as the detailed examples will show. IBM Operational Decision Manager Advanced, along with complementary IBM software offerings that also provide capability for systems of insight, provides a way to deliver the greatest value to your customers and your business. IBM Operational Decision Manager Advanced brings together data from different sources to recognize meaningful trends and patterns. It empowers business users to define, manage, and automate repeatable operational decisions. As a result, organizations can create and shape customer-centric business moments. This IBM Redbooks® publication explains the key concepts of systems of insight and how to implement a system of insight solution with examples. It is intended for IT architects and professionals who are responsible for implementing a systems of insights solution requiring event-based context pattern detection and deterministic decision services to enhance other analytics solution components with IBM Operational Decision Manager Advanced.




The Book of R


Book Description

The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.




Handbook of Statistical Analysis and Data Mining Applications


Book Description

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications




IBM Information Governance Solutions


Book Description

Managing information within the enterprise has always been a vital and important task to support the day-to-day business operations and to enable analysis of that data for decision making to better manage and grow the business for improved profitability. To do all that, clearly the data must be accurate and organized so it is accessible and understandable to all who need it. That task has grown in importance as the volume of enterprise data has been growing significantly (analyst estimates of 40 - 50% growth per year are not uncommon) over the years. However, most of that data has been what we call "structured" data, which is the type that can fit neatly into rows and columns and be more easily analyzed. Now we are in the era of "big data." This significantly increases the volume of data available, but it is in a form called "unstructured" data. That is, data from sources that are not as easily organized, such as data from emails, spreadsheets, sensors, video, audio, and social media sites. There is valuable information in all that data but it calls for new processes to enable it to be analyzed. All this has brought with it a renewed and critical need to manage and organize that data with clarity of meaning, understandability, and interoperability. That is, you must be able to integrate this data when it is from within an enterprise but also importantly when it is from many different external sources. What is described here has been and is being done to varying extents. It is called "information governance." Governing this information however has proven to be challenging. But without governance, much of the data can be less useful and perhaps even used incorrectly, significantly impacting enterprise decision making. So we must also respect the needs for information security, consistency, and validity or else suffer the potential economic and legal consequences. Implementing sound governance practices needs to be an integral part of the information control in our organizations. This IBM® Redbooks® publication focuses on the building blocks of a solid governance program. It examines some familiar governance initiative scenarios, identifying how they underpin key governance initiatives, such as Master Data Management, Quality Management, Security and Privacy, and Information Lifecycle Management. IBM Information Management and Governance solutions provide a comprehensive suite to help organizations better understand and build their governance solutions. The book also identifies new and innovative approaches that are developed by IBM practice leaders that can help as you implement the foundation capabilities in your organizations.




Introduction to Business Statistics


Book Description

Highly praised for its clarity and great examples, Weiers' INTRODUCTION TO BUSINESS STATISTICS, 6E introduces fundamental statistical concepts in a conversational language that connects with today's students. Even those intimidated by statistics quickly discover success with the book's proven learning aids, outstanding illustrations, non-technical terminology, and hundreds of current examples drawn from real-life experiences familiar to students. A continuing case and contemporary applications combine with more than 100 new or revised exercises and problems that reflect the latest changes in business today with an accuracy you can trust. You can easily introduce today's leading statistical software and teach not only how to complete calculations by hand and using Excel, but also how to determine which method is best for a particular task. The book's student-oriented approach is supported with a wealth of resources, including the innovative new CengageNOW online course management and learning system that saves you time while helping students master the statistical skills most important for business success.




IBM Cloud Private System Administrator's Guide


Book Description

IBM® Cloud Private is an application platform for developing and managing containerized applications across hybrid cloud environments, on-premises and public clouds. It is an integrated environment for managing containers that includes the container orchestrator Kubernetes, a private image registry, a management console, and monitoring frameworks. This IBM Redbooks covers tasks performed by IBM Cloud Private system administrators such as installation for high availability, configuration, backup and restore, using persistent volumes, networking, security, logging and monitoring. Istio integration, troubleshooting and so on. As part of this project we also developed several code examples and you can download those from the IBM Redbooks GitHub location: https://github.com/IBMRedbooks. The authors team has many years of experience in implementing IBM Cloud Private and other cloud solutions in production environments, so throughout this document we took the approach of providing you the recommended practices in those areas. If you are an IBM Cloud Private system administrator, this book is for you. If you are developing applications on IBM Cloud Private, you can see the IBM Redbooks publication IBM Cloud Private Application Developer's Guide, SG24-8441.




Computerworld


Book Description

For more than 40 years, Computerworld has been the leading source of technology news and information for IT influencers worldwide. Computerworld's award-winning Web site (Computerworld.com), twice-monthly publication, focused conference series and custom research form the hub of the world's largest global IT media network.




Probability and Statistics for Engineering and the Sciences


Book Description

This market-leading text provides a comprehensive introduction to probability and statistics for engineering students in all specialties. This proven, accurate book and its excellent examples evidence Jay Devore’s reputation as an outstanding author and leader in the academic community. Devore emphasizes concepts, models, methodology, and applications as opposed to rigorous mathematical development and derivations. Through the use of lively and realistic examples, students go beyond simply learning about statistics-they actually put the methods to use. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.