Stability Analysis in Terms of Two Measures


Book Description

The problems of modern society are both complex and multidisciplinary. In spite of the apparent diversity of problems, tools developed in one context are often adaptable to an entirely different situation. The concepts of Lyapunov stability have given rise to many new notions that are important in applications. Relative to each concept, there exists a sufficient literature parallel to Lyapunov's theory of stability. It is natural to ask whether we can find a notion and develop the corresponding theory which unifies and includes a variety of known concepts of stability in a single set up. The answer is yes and it is the development of stability theory in terms of two measures. It is in this spirit the authors see the importance of the present monograph. Its aim is to present a systematic account of recent developments in the stability theory in terms of two distinct measures, describe the current state of the art, show the essential unity achieved by wealth of applications, and provide a unified general structure applicable to several nonlinear problems.




Stability Analysis of Nonlinear Systems


Book Description

The book investigates stability theory in terms of two different measure, exhibiting the advantage of employing families of Lyapunov functions and treats the theory of a variety of inequalities, clearly bringing out the underlying theme. It also demonstrates manifestations of the general Lyapunov method, showing how this technique can be adapted to various apparently diverse nonlinear problems. Furthermore it discusses the application of theoretical results to several different models chosen from real world phenomena, furnishing data that is particularly relevant for practitioners. Stability Analysis of Nonlinear Systems is an invaluable single-sourse reference for industrial and applied mathematicians, statisticians, engineers, researchers in the applied sciences, and graduate students studying differential equations.




Stability Analysis of Impulsive Functional Differential Equations


Book Description

This book is devoted to impulsive functional differential equations which are a natural generalization of impulsive ordinary differential equations (without delay) and of functional differential equations (without impulses). At the present time the qualitative theory of such equations is under rapid development. After a presentation of the fundamental theory of existence, uniqueness and continuability of solutions, a systematic development of stability theory for that class of problems is given which makes the book unique. It addresses to a wide audience such as mathematicians, applied researches and practitioners.




Mathematical Analysis II: Optimisation, Differential Equations and Graph Theory


Book Description

This book collects original research papers and survey articles presented at the International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM), held at Delhi Technological University, India, on 23–25 October 2018. Divided into two volumes, it discusses major topics in mathematical analysis and its applications, and demonstrates the versatility and inherent beauty of analysis. It also shows the use of analytical techniques to solve problems and, wherever possible, derive their numerical solutions. This volume addresses major topics, such as multi-objective optimization problems, impulsive differential equations, mathematical modelling, fuzzy mathematics, graph theory, and coding theory. It is a valuable resource to students as well as researchers in mathematical sciences.




Dynamic Systems on Measure Chains


Book Description

From a modelling point of view, it is more realistic to model a phenomenon by a dynamic system which incorporates both continuous and discrete times, namely, time as an arbitrary closed set of reals called time-scale or measure chain. It is therefore natural to ask whether it is possible to provide a framework which permits us to handle both dynamic systems simultaneously so that one can get some insight and a better understanding of the subtle differences of these two different systems. The answer is affirmative, and recently developed theory of dynamic systems on time scales offers the desired unified approach. In this monograph, we present the current state of development of the theory of dynamic systems on time scales from a qualitative point of view. It consists of four chapters. Chapter one develops systematically the necessary calculus of functions on time scales. In chapter two, we introduce dynamic systems on time scales and prove the basic properties of solutions of such dynamic systems. The theory of Lyapunov stability is discussed in chapter three in an appropriate setup. Chapter four is devoted to describing several different areas of investigations of dynamic systems on time scales which will provide an exciting prospect and impetus for further advances in this important area which is very new. Some important features of the monograph are as follows: It is the first book that is dedicated to a systematic development of the theory of dynamic systems on time scales which is of recent origin. It demonstrates the interplay of the two different theories, namely, the theory of continuous and discrete dynamic systems, when imbedded in one unified framework. It provides an impetus to investigate in the setup of time scales other important problems which might offer a better understanding of the intricacies of a unified study.£/LIST£ Audience: The readership of this book consists of applied mathematicians, engineering scientists, research workers in dynamic systems, chaotic theory and neural nets.




Impulsive Systems on Hybrid Time Domains


Book Description

This monograph discusses the issues of stability and the control of impulsive systems on hybrid time domains, with systems presented on discrete-time domains, continuous-time domains, and hybrid-time domains (time scales). Research on impulsive systems has recently attracted increased interest around the globe, and significant progress has been made in the theory and application of these systems. This book introduces recent developments in impulsive systems and fundamentals of various types of differential and difference equations. It also covers studies in stability related to time delays and other various control applications on the different impulsive systems. In addition to the analyses presented on dynamical systems that are with or without delays or impulses, this book concludes with possible future directions pertaining to this research.




Volterra Equations and Applications


Book Description

This volume comprises selected papers presented at the Volterra Centennial Symposium and is dedicated to Volterra and the contribution of his work to the study of systems - an important concept in modern engineering. Vito Volterra began his study of integral equations at the end of the nineteenth century and this was a significant development in th




Communications in Difference Equations


Book Description

This collection of carefully refereed and edited papers were originally presented at the Fourth International Conference on Difference Equations held in Poznan, Poland. Contributions were from a diverse group of researchers from several countries and featured discussions on the theory of difference equations, open problems and conjectures, as well as related applications. Whether new to the area of research, or a veteran, this volume will be a valuable resource on the recent advances in the field of difference equations.




Qualitative Methods in Nonlinear Dynamics


Book Description

"Presents new approaches to qualitative analysis of continuous, discreteptime, and impulsive nonlinear systems via Liapunov matrix-valued functions that introduce more effective tests for solving problems of estimating the domains of asymptotic stability."




Qualitative Analysis and Control of Complex Neural Networks with Delays


Book Description

This book focuses on the stability of the dynamical neural system, synchronization of the coupling neural system and their applications in automation control and electrical engineering. The redefined concept of stability, synchronization and consensus are adopted to provide a better explanation of the complex neural network. Researchers in the fields of dynamical systems, computer science, electrical engineering and mathematics will benefit from the discussions on complex systems. The book will also help readers to better understand the theory behind the control technique and its design.