Stable Smarts


Book Description

Old cowboy tricks, quick fixes, hardlearned lessons, and tried-and-true horsekeeping wisdom fill the pages of this indispensable handbook from seasoned horsewoman Heather Smith Thomas. Writing from her Idaho ranch, and drawing from a lifetime of working with horses, Thomas has assembled a treasure-trove of information for anyone who rides, keeps, or dreams of spending time with horses. Presented in appealing bite-sized portions, ThomasÕs insider tips cover everything from barns and tack to feeding, foaling, medical care, trail riding, camping, knot-tying, fencing, trailering, and more. She addresses every aspect of horse care and handling that average horseowners will encounter, regardless of where they live, what breeds they have, and what style of riding or work they do with their horses. Resourceful, knowledgeable, and intuitive about horses, Heather Smith Thomas is someone every horse enthusiast would love to ride alongside for a spell. With Stable Smarts, they can do just that, as often as theyÕd like.




Intelligent Systems for Stability Assessment and Control of Smart Power Grids


Book Description

Power systems are evolving towards the Smart Grid paradigm, featured by large-scale integration of renewable energy resources, e.g. wind and solar power, deeper participation of demand side, and enhanced interaction with electric vehicles. While these emerging elements are inherently stochastic in nature, they are creating a challenge to the system’s stability and its control. In this context, conventional analysis tools are becoming less effective, and necessitate the use alternative tools that are able to deal with the high uncertainty and variability in the smart grid. Smart Grid initiatives have facilitated wide-spread deployment of advanced sensing and communication infrastructure, e.g. phasor measurement units at grid level and smart meters at household level, which collect tremendous amount of data in various time and space scales. How to fully utilize the data and extract useful knowledge from them, is of great importance and value to support the advanced stability assessment and control of the smart grid. The intelligent system strategy has been identified as an effective approach to meet the above needs. This book presents the cutting-edge intelligent system techniques and their applications for stability assessment and control of power systems. The major topics covered in this book are: Intelligent system design and algorithms for on-line stability assessment, which aims to use steady-state operating variables to achieve fast stability assessment for credible contingencies. Intelligent system design and algorithms for preventive stability control, which aims at transparent and interpretable decision-making on preventive control actions to manipulate system operating condition against possible contingencies. Intelligent system design and algorithms for real-time stability prediction, which aims to use synchronized measurements to foresee the stability status under an ongoing disturbance. Intelligent system design and algorithms for emergency stability control, which aims at fast decision-making on stability control actions at emergency stage where instability is propagating. Methodologies and algorithms for improving the robustness of intelligent systems against missing-data issues. This book is a reference and guide for researchers, students, and engineers who seek to study and design intelligent systems to resolve stability assessment and control problems in the smart grid age.




Stability-Constrained Optimization for Modern Power System Operation and Planning


Book Description

Stability-Constrained Optimization for Modern Power System Operation and Planning Comprehensive treatment of an aspect of stability constrained operations and planning, including the latest research and engineering practices Stability-Constrained Optimization for Modern Power System Operation and Planning focuses on the subject of power system stability. Unlike other books in this field, which focus mainly on the dynamic modeling, stability analysis, and controller design for power systems, this book is instead dedicated to stability-constrained optimization methodologies for power system stability enhancement, including transient stability-constrained power system dispatch and operational control, and voltage stability-constrained dynamic VAR Resources planning in the power grid. Authored by experts with established track records in both research and industry, Stability-Constrained Optimization for Modern Power System Operation and Planning covers three parts: Overview of power system stability, including definition, classification, phenomenon, mathematical models and analysis tools for stability assessment, as well as a review of recent large-scale blackouts in the world Transient stability-constrained optimal power flow (TSC-OPF) and transient stability constrained-unit commitment (TSC-UC) for power system dispatch and operational control, including a series of optimization model formulations, transient stability constraint construction and extraction methods, and efficient solution approaches Optimal planning of dynamic VAR Resources (such as STATCOM and SVC) in power system for voltage stability enhancement, including a set of voltage stability indices, candidate bus selection methods, multi-objective optimization model formulations, and high-quality solution approaches Stability-Constrained Optimization for Modern Power System Operation and Planning provides the latest research findings to scholars, researchers, and postgraduate students who are seeking optimization methodologies for power system stability enhancement, while also offering key practical methods to power system operators, planners, and optimization algorithm developers in the power industry.




Structronic Systems: Smart Structures, Devices And Systems (In 2 Parts)


Book Description

This book is concerned with electrostructural systems, particularly the interaction between the control of the structural and electrical (electronic) components. Structronics is a new emerging area with many potential applications in the design of high-performance structures, adaptive structures, high-precision systems, and micro-systems. As structures are increasingly being controlled by electronics, the problems of structural engineering can be separated less and less from those of electronic engineering and control engineering. This graduate-level book fills a gap in the literature by considering these problems while giving an overview of the current state of analysis, modelling and control for structronic systems. It is a coherent compendium written by leading experts in this new research area and gives readers a sophisticated toolbox that will allow them to tackle the modelling and control of smart structures. The inclusion of an extensive, up-to-date bibliography and index makes this volume an invaluable standard for professional reference.Because of the large number of contributions to the present volume, it has been subdivided into two parts, of which this is Part I. This book will be of interest to engineers, materials scientists, physicists and applied mathematicians.The synergistic integration of active (smart) materials, structures, sensors, actuators, and control electronics has redefined the concept of structures from a conventional passive elastic system to an active (life-like) structronic (structure + electronic) system with inherent self-sensing, diagnosis, and control capabilities. Because of its multi-disciplinary nature, the development of structronic systems has attracted researchers and scientists from many disciplines, such as structures, materials, control, electronics, mathematics, manufacturing, electromechanics, and mechanics. In practical applications, this new structronic system can be used as a component of high-performance machines or structural systems, or be an integrated structure itself performing designated function(s).Most common active (smart) materials, such as piezoelectrics, shape-memory alloys, electro- and magneto-strictive materials, and polyelectrolyte gels have been reviewed in Part I. Application examples are also provided and research issues reported on. While the first part focuses primarily on materials and structures, Part II emphasizes control applications and intelligent systems. With the information provided in this two-volume book, scientists and researchers can easily grasp the state of the art of smart materials and structronic systems, and are ready to pursue their own research and development endeavors.




Power System Loads and Power System Stability


Book Description

This thesis develops a pioneering methodology and a concept for identifying critical loads and load model parameters in large power networks based on their influence on power system stability. The research described in the thesis first develops an automatic load modelling tool (ALMT) that can be used to automatically build load model from actual measured power system data without human intervention and the benefits of the ALMY are explored. Secondly, it develops a pioneering framework based on Morris screening method for ranking power system load model parameters based on their influence on overall power system stability (voltage, frequency, transient and small disturbance stability) considering different load models and loading conditions. Thirdly, a novel probabilistic methodology for determining the accuracy levels of critical load model parameters has been developed. This book will be of interest to students and researchers within the field of electrical engineering, as well as industry professionals.







Smart Energy and Electric Power Systems


Book Description

Smart Energy and Electric Power Systems: Current Trends and New Intelligent Perspectives reviews key applications of intelligent algorithms and machine learning techniques to increasingly complex and data-driven power systems with distributed energy resources to enable evidence-driven decision-making and mitigate catastrophic power shortages. The book reviews foundations towards the integration of machine learning and smart power systems before addressing key challenges and issues. The work then explores AI- and ML-informed techniques to rebalancing of supply and demand. Methods discussed include distributed energy resources and prosumer markets, electricity demand prediction, component fault detection, and load balancing. Security solutions are introduced, along with potential solutions to cyberattacks, security data detection and critical loads in power systems. The work closes with a lengthy discussion, informed by case studies, on integrating AI and ML into the modern energy sector. - Helps improve the prediction capability of AI algorithms to make evidence-based decisions in the smart supply of electricity, including load shedding - Focuses on how to integrate AI and ML into the energy sector in the real-world, with many chapters accompanied by case studies - Addresses a number of proven AI and ML- informed techniques in rebalancing supply and demand




More-Electronics Power Systems: Power Quality and Stability


Book Description

This book aims to investigate emerging power quality and stability problems as well as their solutions in more-electronics power systems. The majority of methods presented here are validated through simulation and/or experimental results, thereby improving their credibility. The ultimate objective of these methods is to achieve secured operation of modern power systems with increased (up to 100%) renewable energy penetration, which is an emerging topic in this field. Readers will not only learn about the knowledge of more-electronics power systems but also the step-by-step process of how they can implement this to their research work or industrial practice. This book caters to engineers and academics working in the field of power systems with the main focus of improving power quality and stability.




Real-Time Stability in Power Systems


Book Description

This pioneering volume has been updated and enriched to reflect the state-of-the-art in blackout prediction and prevention. It documents and explains background and algorithmic aspects of the most successful steady-state, transient and voltage stability solutions available today in real-time. It also describes new, cutting-edge stability applications of synchrophasor technology, and captures industry acceptance of metrics and visualization tools that quantify and monitor the distance to instability. Expert contributors review a broad spectrum of additionally available techniques, such as trajectory sensitivities, ensuring this volume remains the definitive resource for industry practitioners and academic researchers in this critical area of power system operations.




Wide Area Power Systems Stability, Protection, and Security


Book Description

This book proposes new control and protection schemes to improve the overall stability and security of future wide-area power systems. It focuses on the high penetration levels of renewable energy sources and distributed generation, particularly with the trend towards smart grids. The control methods discussed can improve the overall stability in normal and abnormal operation conditions, while the protection methods presented can be used to ensure the secure operation of systems under most severe contingencies. Presenting stability, security, and protection methods for power systems in one concise volume, this book takes the reader on a journey from concepts and fundamentals to the latest and future trends in each topic covered, making it an informative and intriguing read for researchers, graduate students, and practitioners alike.