Algebraic Spaces and Stacks


Book Description

This book is an introduction to the theory of algebraic spaces and stacks intended for graduate students and researchers familiar with algebraic geometry at the level of a first-year graduate course. The first several chapters are devoted to background material including chapters on Grothendieck topologies, descent, and fibered categories. Following this, the theory of algebraic spaces and stacks is developed. The last three chapters discuss more advanced topics including the Keel-Mori theorem on the existence of coarse moduli spaces, gerbes and Brauer groups, and various moduli stacks of curves. Numerous exercises are included in each chapter ranging from routine verifications to more difficult problems, and a glossary of necessary category theory is included as an appendix.




Stacks and Categories in Geometry, Topology, and Algebra


Book Description

This volume contains the proceedings of the CATS4 Conference on Higher Categorical Structures and their Interactions with Algebraic Geometry, Algebraic Topology and Algebra, held from July 2-7, 2012, at CIRM in Luminy, France. Over the past several years, the CATS conference series has brought together top level researchers from around the world interested in relative and higher category theory and its applications to classical mathematical domains. Included in this volume is a collection of articles covering the applications of categories and stacks to geometry, topology and algebra. Techniques such as localization, model categories, simplicial objects, sheaves of categories, mapping stacks, dg structures, hereditary categories, and derived stacks, are applied to give new insight on cluster algebra, Lagrangians, trace theories, loop spaces, structured surfaces, stability, ind-coherent complexes and 1-affineness showing up in geometric Langlands, branching out to many related topics along the way.




Stacks and Categories in Geometry, Topology, and Algebra


Book Description

This volume contains the proceedings of the CATS4 Conference on Higher Categorical Structures and their Interactions with Algebraic Geometry, Algebraic Topology and Algebra, held from July 2-7, 2012, at CIRM in Luminy, France. Over the past several years, the CATS conference series has brought together top level researchers from around the world interested in relative and higher category theory and its applications to classical mathematical domains. Included in this volume is a collection of articles covering the applications of categories and stacks to geometry, topology and algebra. Techniques such as localization, model categories, simplicial objects, sheaves of categories, mapping stacks, dg structures, hereditary categories, and derived stacks, are applied to give new insight on cluster algebra, Lagrangians, trace theories, loop spaces, structured surfaces, stability, ind-coherent complexes and 1-affineness showing up in geometric Langlands, branching out to many related topics along the way







Basic Algebraic Geometry 2


Book Description

The second volume of Shafarevich's introductory book on algebraic geometry focuses on schemes, complex algebraic varieties and complex manifolds. As with Volume 1 the author has revised the text and added new material, e.g. a section on real algebraic curves. Although the material is more advanced than in Volume 1 the algebraic apparatus is kept to a minimum making the book accessible to non-specialists. It can be read independently of Volume 1 and is suitable for beginning graduate students in mathematics as well as in theoretical physics.




Homotopical Algebraic Geometry II: Geometric Stacks and Applications


Book Description

This is the second part of a series of papers called "HAG", devoted to developing the foundations of homotopical algebraic geometry. The authors start by defining and studying generalizations of standard notions of linear algebra in an abstract monoidal model category, such as derivations, étale and smooth morphisms, flat and projective modules, etc. They then use their theory of stacks over model categories to define a general notion of geometric stack over a base symmetric monoidal model category $C$, and prove that this notion satisfies the expected properties.




Algebraic Geometry


Book Description

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.




Tame Topology and O-minimal Structures


Book Description

These notes give a self-contained treatment of the theory of o-minimal structures from a geometric and topological viewpoint, assuming only rudimentary algebra and analysis. This book should be of interest to model theorists, analytic geometers and topologists.




Affine Flag Manifolds and Principal Bundles


Book Description

Affine flag manifolds are infinite dimensional versions of familiar objects such as Graßmann varieties. The book features lecture notes, survey articles, and research notes - based on workshops held in Berlin, Essen, and Madrid - explaining the significance of these and related objects (such as double affine Hecke algebras and affine Springer fibers) in representation theory (e.g., the theory of symmetric polynomials), arithmetic geometry (e.g., the fundamental lemma in the Langlands program), and algebraic geometry (e.g., affine flag manifolds as parameter spaces for principal bundles). Novel aspects of the theory of principal bundles on algebraic varieties are also studied in the book.




Motivic Homotopy Theory


Book Description

This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.