Static Green's Functions in Anisotropic Media


Book Description

This book presents basic theory on static Green's functions in general anisotropic magnetoelectroelastic media including detailed derivations based on the complex variable method, potential method, and integral transforms. Green's functions corresponding to the reduced cases are also presented including those in anisotropic and transversely isotropic piezoelectric and piezomagnetic media, and in purely anisotropic elastic, transversely isotropic elastic and isotropic elastic media. Problems include those in three-dimensional, (two-dimensional) infinite, half, and biomaterial spaces (planes). While the emphasis is on the Green's functions related to the line and point force, those corresponding to the important line and point dislocation are also provided and discussed. This book provides a comprehensive derivation and collection of the Green's functions in the concerned media, and as such, it is an ideal reference book for researchers and engineers, and a textbook for both students in engineering and applied mathematics.




Static Green's Functions in Anisotropic Media


Book Description

This book presents the theory on static Green's functions in anisotropic magnetoelectroelastic media and their detailed derivations via different methods.




Dyadic Green Functions in Electromagnetic Theory


Book Description

In this comprehensive, new edition, Chen-To Tai gives extensive attention to recent research surrounding the techniques of dyadic Green functions. Additional formulations are introduced, including the classifications and the different methods of finding the eigenfunction expansions. Important new features in this edition include Maxwell's equations, which has been cast in a dyadic form to make the introduction of the electric and magnetic dyadic Green functions easier to understand; the integral solutions to Maxwell's equations, now derived with the aid of the vector-dyadic Green's theorem, allowing several intermediate steps to be omitted; a detailed discussion of complementary reciprocal theorems and transient radiation in moving media; and the derivation of various dyadic Green functions for problems involving plain layered media, and a two-dimensional Fourier-integral representation of these functions. This in-depth textbook will be of particular interest to antenna and microwave engineers, research scientists, and professors.




Statics and Influence Functions - from a Modern Perspective


Book Description

The book teaches engineers many new things about a classical topic which suddenly is again in the center of interest because of its relevance for finite element analysis, for the accuracy of computational methods. It shows that influence functions play a fundamental role in the finite element analysis of structures and practically all of linear computational mechanics. It also strives to add new and important insights into modern structural analysis and into computational mechanics by establishing the central role of influence functions for the numerical analysis and to lay a new foundation to the energy and variational principles.




Mechanics of Non-Homogeneous and Anisotropic Foundations


Book Description

Although realistic soil and rock foundations reveal noticeable deviations in their properties from homogeneity and isotropy, the model of the homogeneous isotropie elastic half-space is widely used when studying static and dynamie interactions between a defonnable foundation and structures. This is explained by significant mathematieal difficulties inherent in problems conceming mechanies of anisotropie and heterogeneous elastic bodies. Solving the basic static and dynamie problems for heterogeneous and anisotropic half-spaces, such as different contact problems and problems of constructing Green's functions, has become possible in the last few decades due to the development of computer engineering techniques and numerical methods. This book contains the results of investigations in the area of statics and dynamies of heterogeneous and anisotropic foundations, carried out by the author in the last five years while working in the Faculty of Civil Engineering at Technion - Israel Institute of Technology. The book is directed at engineers and scientists in the areas of soil mechanics, soil-structures interaction, seismology and geophysics. Some characteristic features of the book are: i) Constructing (Chap.l) solutions in a general fonn for the heterogeneous (in the depth direction) transversely isotropic elastic half-space subjected to different loadings, hannonic in time. Characteristics of the given half-space have an influence on functions (of depth z and parameter k of Hankel's transfonns), which are detennined from a system of ordinary differential equations.




Introduction to Seismology


Book Description

This third edition provides a concise yet approachable introduction to seismic theory, designed as a first course for graduate students or advanced undergraduate students. It clearly explains the fundamental concepts, emphasizing intuitive understanding over lengthy derivations, and outlines the different types of seismic waves and how they can be used to resolve Earth structure and understand earthquakes. New material and updates have been added throughout, including ambient noise methods, shear-wave splitting, back-projection, migration and velocity analysis in reflection seismology, earthquake rupture directivity, and fault weakening mechanisms. A wealth of both reworked and new examples, review questions and computer-based exercises in MATLABĀ®/Python give students the opportunity to apply the techniques they have learned to compute results of interest and to illustrate Earth's seismic properties. More advanced sections, which are not needed to understand the other material, are flagged so that instructors or students pressed for time can skip them.




Anisotropic Elasticity


Book Description

Elasticity is a property of materials which returns them to their original shape after forces applied to change the shape have been removed. This advanced text explores the problems of composite or anisotropic materials and their elasticity.




Petroleum Abstracts


Book Description




Stroh Formalism and Rayleigh Waves


Book Description

Stroh formalism is a powerful mathematical method developed for the analysis of equations of anisotropic elasticity. This exposition introduces the essence of this formalism and demonstrates its effectiveness in both static and dynamic elasticity. The book gives a succinct introduction to Stroh formalism, discusses several important topics in static elasticity, and examines Rayleigh waves, a key topic in nondestructive evaluation, seismology, and materials science.




Integral Methods in Science and Engineering


Book Description

* Good reference text; clusters well with other Birkhauser integral equations & integral methods books (Estrada and Kanwal, Kythe/Puri, Constanda, et al). * Includes many practical applications/techniques for applied mathematicians, physicists, engineers, grad students. * The contributors to the volume draw from a number of physical domains and propose diverse treatments for various mathematical models through the use of integration as an essential solution tool. * Physically meaningful problems in areas related to finite and boundary element techniques, conservation laws, hybrid approaches, ordinary and partial differential equations, and vortex methods are explored in a rigorous, accessible manner. * The new results provided are a good starting point for future exploitation of the interdisciplinary potential of integration as a unifying methodology for the investigation of mathematical models.