Stationary Marked Point Processes


Book Description

Taking an applied point of view, this book provides an accessible introduction to the theory of stationary random marked point processes on the non-negative real line. The reader will be able to gain an intuitive understanding of stationary marked point processes and be able to apply the theory to stochastic modeling. The emphasis is on time averages and asymptotic stationarity. Proofs of the main results are given using shift-coupling methods and measure theory is kept to a minimum. Examples and exercises are given involving explicit construction of time and event stationary versions, using the 'inspection paradox' as an intuitive guide. The Rate Conservation Law is given and used in applications to queueing theory. The prerequisites are a background in probability theory and stochastic processes up to conditional expectation.




An Introduction to the Theory of Point Processes


Book Description

Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.




Statistical Analysis and Modelling of Spatial Point Patterns


Book Description

Spatial point processes are mathematical models used to describe and analyse the geometrical structure of patterns formed by objects that are irregularly or randomly distributed in one-, two- or three-dimensional space. Examples include locations of trees in a forest, blood particles on a glass plate, galaxies in the universe, and particle centres in samples of material. Numerous aspects of the nature of a specific spatial point pattern may be described using the appropriate statistical methods. Statistical Analysis and Modelling of Spatial Point Patterns provides a practical guide to the use of these specialised methods. The application-oriented approach helps demonstrate the benefits of this increasingly popular branch of statistics to a broad audience. The book: Provides an introduction to spatial point patterns for researchers across numerous areas of application Adopts an extremely accessible style, allowing the non-statistician complete understanding Describes the process of extracting knowledge from the data, emphasising the marked point process Demonstrates the analysis of complex datasets, using applied examples from areas including biology, forestry, and materials science Features a supplementary website containing example datasets. Statistical Analysis and Modelling of Spatial Point Patterns is ideally suited for researchers in the many areas of application, including environmental statistics, ecology, physics, materials science, geostatistics, and biology. It is also suitable for students of statistics, mathematics, computer science, biology and geoinformatics.




Point Processes


Book Description

There has been much recent research on the theory of point processes, i.e., on random systems consisting of point events occurring in space or time. Applications range from emissions from a radioactive source, occurrences of accidents or machine breakdowns, or of electrical impluses along nerve fibres, to repetitive point events in an individual's medical or social history. Sometimes the point events occur in space rather than time and the application here raneg from statistical physics to geography. The object of this book is to develop the applied mathemathics of point processes at a level which will make the ideas accessible both to the research worker and the postgraduate student in probability and statistics and also to the mathemathically inclined individual in another field interested in using ideas and results. A thorough knowledge of the key notions of elementary probability theory is required to understand the book, but specialised "pure mathematical" coniderations have been avoided.




Statistical Inference and Simulation for Spatial Point Processes


Book Description

Spatial point processes play a fundamental role in spatial statistics and today they are an active area of research with many new applications. Although other published works address different aspects of spatial point processes, most of the classical literature deals only with nonparametric methods, and a thorough treatment of the theory and applications of simulation-based inference is difficult to find. Written by researchers at the top of the field, this book collects and unifies recent theoretical advances and examples of applications. The authors examine Markov chain Monte Carlo algorithms and explore one of the most important recent developments in MCMC: perfect simulation procedures.




Lectures on the Poisson Process


Book Description

A modern introduction to the Poisson process, with general point processes and random measures, and applications to stochastic geometry.




Marked Point Processes on the Real Line


Book Description

This book gives a self-contained introduction to the dynamic martingale approach to marked point processes (MPP). Based on the notion of a compensator, this approach gives a versatile tool for analyzing and describing the stochastic properties of an MPP. In particular, the authors discuss the relationship of an MPP to its compensator and particular classes of MPP are studied in great detail. The theory is applied to study properties of dependent marking and thinning, to prove results on absolute continuity of point process distributions, to establish sufficient conditions for stochastic ordering between point and jump processes, and to solve the filtering problem for certain classes of MPPs.




Markov Processes for Stochastic Modeling


Book Description

Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.




Stationary Stochastic Processes


Book Description

Intended for a second course in stationary processes, Stationary Stochastic Processes: Theory and Applications presents the theory behind the field’s widely scattered applications in engineering and science. In addition, it reviews sample function properties and spectral representations for stationary processes and fields, including a portion on stationary point processes. Features Presents and illustrates the fundamental correlation and spectral methods for stochastic processes and random fields Explains how the basic theory is used in special applications like detection theory and signal processing, spatial statistics, and reliability Motivates mathematical theory from a statistical model-building viewpoint Introduces a selection of special topics, including extreme value theory, filter theory, long-range dependence, and point processes Provides more than 100 exercises with hints to solutions and selected full solutions This book covers key topics such as ergodicity, crossing problems, and extremes, and opens the doors to a selection of special topics, like extreme value theory, filter theory, long-range dependence, and point processes, and includes many exercises and examples to illustrate the theory. Precise in mathematical details without being pedantic, Stationary Stochastic Processes: Theory and Applications is for the student with some experience with stochastic processes and a desire for deeper understanding without getting bogged down in abstract mathematics.




An Introduction to the Theory of Point Processes


Book Description

Stochastic point processes are sets of randomly located points in time, on the plane or in some general space. This book provides a general introduction to the theory, starting with simple examples and an historical overview, and proceeding to the general theory. It thoroughly covers recent work in a broad historical perspective in an attempt to provide a wider audience with insights into recent theoretical developments. It contains numerous examples and exercises. This book aims to bridge the gap between informal treatments concerned with applications and highly abstract theoretical treatments.




Recent Books