Highway Safety Analytics and Modeling


Book Description

Highway Safety Analytics and Modeling comprehensively covers the key elements needed to make effective transportation engineering and policy decisions based on highway safety data analysis in a single. reference. The book includes all aspects of the decision-making process, from collecting and assembling data to developing models and evaluating analysis results. It discusses the challenges of working with crash and naturalistic data, identifies problems and proposes well-researched methods to solve them. Finally, the book examines the nuances associated with safety data analysis and shows how to best use the information to develop countermeasures, policies, and programs to reduce the frequency and severity of traffic crashes. - Complements the Highway Safety Manual by the American Association of State Highway and Transportation Officials - Provides examples and case studies for most models and methods - Includes learning aids such as online data, examples and solutions to problems




Statistical Methods in Highway Safety Analysis


Book Description

TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 295: Statistical Methods in Highway Safety Analysis focus on the type of safety analysis required to support traditional engineering functions, such as the identification of hazardous locations and the development and evaluation of countermeasures. Analyses related specifically to driver and vehicle safety are not covered, but some statistical methods used in these areas are of relevance and are summarized where appropriate.




Measurement Error


Book Description

Over the last 20 years, comprehensive strategies for treating measurement error in complex models and accounting for the use of extra data to estimate measurement error parameters have emerged. Focusing on both established and novel approaches, Measurement Error: Models, Methods, and Applications provides an overview of the main techniques and illu




Statistical and Econometric Methods for Transportation Data Analysis, Second Edition


Book Description

The complexity, diversity, and random nature of transportation problems necessitates a broad analytical toolbox. Describing tools commonly used in the field, Statistical and Econometric Methods for Transportation Data Analysis, Second Edition provides an understanding of a broad range of analytical tools required to solve transportation problems. It includes a wide breadth of examples and case studies covering applications in various aspects of transportation planning, engineering, safety, and economics. After a solid refresher on statistical fundamentals, the book focuses on continuous dependent variable models and count and discrete dependent variable models. Along with an entirely new section on other statistical methods, this edition offers a wealth of new material. New to the Second Edition A subsection on Tobit and censored regressions An explicit treatment of frequency domain time series analysis, including Fourier and wavelets analysis methods New chapter that presents logistic regression commonly used to model binary outcomes New chapter on ordered probability models New chapters on random-parameter models and Bayesian statistical modeling New examples and data sets Each chapter clearly presents fundamental concepts and principles and includes numerous references for those seeking additional technical details and applications. To reinforce a practical understanding of the modeling techniques, the data sets used in the text are offered on the book’s CRC Press web page. PowerPoint and Word presentations for each chapter are also available for download.




Roadside Design Guide


Book Description




Improving Motor Carrier Safety Measurement


Book Description

Every year roughly 100,000 fatal and injury crashes occur in the United States involving large trucks and buses. The Federal Motor Carrier Safety Administration (FMCSA) in the U.S. Department of Transportation works to reduce crashes, injuries, and fatalities involving large trucks and buses. FMCSA uses information that is collected on the frequency of approximately 900 different violations of safety regulations discovered during (mainly) roadside inspections to assess motor carriers' compliance with Federal Motor Carrier Safety Regulations, as well as to evaluate their compliance in comparison with their peers. Through use of this information, FMCSA's Safety Measurement System (SMS) identifies carriers to receive its available interventions in order to reduce the risk of crashes across all carriers. Improving Motor Carrier Safety Measurement examines the effectiveness of the use of the percentile ranks produced by SMS for identifying high-risk carriers, and if not, what alternatives might be preferred. In addition, this report evaluates the accuracy and sufficiency of the data used by SMS, to assess whether other approaches to identifying unsafe carriers would identify high-risk carriers more effectively, and to reflect on how members of the public use the SMS and what effect making the SMS information public has had on reducing crashes.










Commercial Motor Vehicle Driver Fatigue, Long-Term Health, and Highway Safety


Book Description

There are approximately 4,000 fatalities in crashes involving trucks and buses in the United States each year. Though estimates are wide-ranging, possibly 10 to 20 percent of these crashes might have involved fatigued drivers. The stresses associated with their particular jobs (irregular schedules, etc.) and the lifestyle that many truck and bus drivers lead, puts them at substantial risk for insufficient sleep and for developing short- and long-term health problems. Commercial Motor Vehicle Driver Fatigue, Long-Term Health and Highway Safety assesses the state of knowledge about the relationship of such factors as hours of driving, hours on duty, and periods of rest to the fatigue experienced by truck and bus drivers while driving and the implications for the safe operation of their vehicles. This report evaluates the relationship of these factors to drivers' health over the longer term, and identifies improvements in data and research methods that can lead to better understanding in both areas.